Polyphenylene sulfide composite laminate from flexible nonwovens and carbon fiber fabrics prepared by thermal lamination and thermal treatment

  • Liang Zhao
  • Ziping Huang
  • Siwei Xiong
  • Jiashun Peng
  • Jiuxiao Sun
  • Xianze Yin
  • Guoning Guo
  • Bin XiongEmail author
  • Xuyan Song
  • Leping Huang
  • Hua Wang
  • Luoxin WangEmail author
Original Paper


In this work, with the flexible carbon fiber (CF) fabric and polyphenylene sulfide (PPS) nonwovens as reinforcement and matrix, respectively, the composites were prepared by thermo-compression lamination to obtain the rigid CF/PPS composite laminates. We investigated effects of the pretreating on CF fabric with silane coupling agent (KH560) and the thermal treatment on the mechanical properties, crystalline behaviors and micromorphologies of the composites. It was found that the appropriate thermal treatment conditions and the use of KH560 are necessary to strengthen the interface bonding between CF and PPS matrix, which is verified by the morphologies of fracture surfaces of CF/PPS composites. Under the thermal treatment condition of 240 °C for 1 h, the CF/PPS composite laminate has a relatively high crystallinity and mechanical properties. The tensile strength, tensile modulus, flexural strength, flexural modulus, interlaminar shear strength and impact strength of the composite laminates reach 930.4 MPa, 9.4 GPa, 950.6 MPa, 60.5 GPa, 40.3 MPa and 68.7 MPa.


Polyphenylene sulfide nonwoven Carbon fiber fabric Thermal treatment Thermal lamination Mechanical property Micromorphology 



This research did not receive any specific grant from funding agencies in the public, commercial or not-for-profit sectors.


  1. 1.
    Jing M, Che J, Xu S, Liu Z, Fu Q (2017) The effect of surface modification of glass fiber on the performance of poly(lactic acid) composites: graphene oxide vs. silane coupling agents. Appl Surf Sci 435:1046–1056CrossRefGoogle Scholar
  2. 2.
    Rana RS, Kumre A, Rana S, Purohit R (2017) Characterization of properties of epoxy sisal/glass fiber reinforced hybrid composite. Mater Today Proc 4:5445–5451CrossRefGoogle Scholar
  3. 3.
    Lee IG, Kim DH, Jung KH, Kim HJ, Kim HS (2017) Effect of the coolingrate on the mechanical properties of glass fiber reinforced thermoplastic composites. Compos Struct 177:28–37CrossRefGoogle Scholar
  4. 4.
    Saghar A, Khan M, Sadiq I, Subhani T (2017) Effect of carbon nanotubes and silicon carbide particles on ablative properties of carbon fiber phenolic matrix composites. Vacuum 148:124–126CrossRefGoogle Scholar
  5. 5.
    Liao G, Li Z, Cheng Y, Xu D, Zhu D, Jiang S, Guo J, Chen X, Xu G, Zhu Y (2018) Properties of oriented carbon fiber/polyamide 12 composite parts fabricated by fused deposition modeling. Mater Des 139:283–292CrossRefGoogle Scholar
  6. 6.
    Garcia-Gonzalez D, Rodriguez-Millan M, Rusinek A, Arias A (2015) Investigation of mechanical impact behavior of short carbon-fiber-reinforced PEEK composites. Compos Struct 133:1116–1126CrossRefGoogle Scholar
  7. 7.
    Yang S, Chalivendra VB, Yong KK (2017) Fracture and impact characterization of novel auxetic Kevlar®/Epoxy laminated composites. Compos Struct 168:120–129CrossRefGoogle Scholar
  8. 8.
    Hazarika A, Deka BK, Kim DY, Kong K, Park YB, Park HW (2015) Growth of aligned ZnO nanorods on woven Kevlar® fiber and its performance in woven Kevlar® fiber/polyester composites. Compos Part A Appl S 78:284–293CrossRefGoogle Scholar
  9. 9.
    Bandaru AK, Patel S, Sachan Y, Ahmad S, Alagirusamy R, Bhatnagar N (2016) Mechanical behavior of Kevlar/basalt reinforced polypropylene composites. Compos Part A Appl S 90:642–652CrossRefGoogle Scholar
  10. 10.
    Fu SY, Lauke B, Mäder E, Yue CY, Hu X (2000) Tensile properties of short-glass-fiber-reinforced and short-carbon-fiber-reinforced polypropylene composites. Compos Part A Appl S 31:1117–1125CrossRefGoogle Scholar
  11. 11.
    Pimenta S, Pinho ST (2011) Recycling carbon fibre reinforced polymers for structural applications: technology review and market outlook. Waste Manag 31:378–392CrossRefGoogle Scholar
  12. 12.
    El-Dessouky HM, Lawrence CA (2013) Ultra-lightweight carbon fibre/thermoplastic composite material using spread tow technology. Compos Part B Eng 50:91–97CrossRefGoogle Scholar
  13. 13.
    Ren H, Xu D, Yan G, Zhang G, Wang X, Long S, Yang J (2017) Effect of carboxylic polyphenylene sulfide on the micromechanical properties of polyphenylene sulfide/carbon fiber composites. Compos Sci Technol 146:65–72CrossRefGoogle Scholar
  14. 14.
    Auerbach AB, Harmon WS (1997) Melt-blown polyarylene sulfide microfibers and method of making the same. US5695869.Google Scholar
  15. 15.
    Wang H, Yan C, Xu HB, Li C, Chen G, Liu D, Tu YL, Chen MD (2012) Progress in the research of carbon fiber sizing agent. Aeronaut Manuf Technol 416:95–99Google Scholar
  16. 16.
    Arici A (2005) Influence of annealing on the performance of short glass fiber-reinforced polyphenylene sulfide (PPS) composites. J Compos Mater 39:21–33CrossRefGoogle Scholar
  17. 17.
    Lee TH, Boey FYC, Khor KA (1995) On the determination of polymer crystallinity for a thermoplastic PPS composite by thermal analysis. Compos Sci Technol 53:259–274CrossRefGoogle Scholar
  18. 18.
    Liu D, Zhu Y, Ding J, Lin X, Fang X (2015) Experimental investigation of carbon fiber reinforced poly(phenylene sulfide) composites prepared using a double-belt press. Compos Part B Eng 77:363–370CrossRefGoogle Scholar
  19. 19.
    Díez-Pascual AM, Naffakh M (2012) Tuning the properties of carbon fiber-reinforced poly(phenylene sulphide) laminates via incorporation of inorganic nanoparticles. Polymer 53:2369–2378CrossRefGoogle Scholar
  20. 20.
    Jing P, Zhu S, Yu M, Yuan X, Liu W, Jiang Z (2016) Preparation of carbon fiber fabric reinforced polyphenylene sulfide (CFF/PPS) thermoplastic composites based on surface modification of carbon fibers. J Mater Eng 44:21–27Google Scholar
  21. 21.
    Liu B, Liu Z, Wang X, Zhang G, Long S, Yang J (2013) Interfacial shear strength of carbon fiber reinforced polyphenylene sulfide measured by the microbond test. Polym Test 32:724–730CrossRefGoogle Scholar
  22. 22.
    Khan SM, Gull N, Munawar MA, Zia S, Anjum F, Iqbal MS, Shafiq M, Islam A, Awais SM, Butt MA, Butt MTZ, Jamil T (2016) Polyphenylene sulphide/carbon fiber composites: study on their thermal, mechanical and microscopic properties. Iran Polym J 25:475–485CrossRefGoogle Scholar
  23. 23.
    Maiti SN (2007) Effect of maleation on polyamide-6/EPDM-G-MAH blends. Soft Mater 4:85–100CrossRefGoogle Scholar
  24. 24.
    Lee KH, Min P, Kim YC, Choe CR (1993) Crystallization behavior of polyphenylene sulfide (PPS) and PPS/carbon fiber composites: effect of cure. Polym Bull 30:469–475CrossRefGoogle Scholar
  25. 25.
    Black RM, List CF, Wells RJ (2010) Thermal stability of p-phenylene sulphide polymers. J Chem Technol Biot 17:269–275Google Scholar
  26. 26.
    Ishida H, Koenig JL (1978) Fourier transform infrared spectroscopic study of the silane coupling agent/porous silica interface. J Colloid Interf Sci 64:555–564CrossRefGoogle Scholar
  27. 27.
    Iglesias JG, González-Benito J, Aznar AJ, Bravo J, Baselga J (2002) Effect of glass fiber surface treatments on mechanical strength of epoxy based composite materials. J Colloid Interf Sci 250:251–260CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  • Liang Zhao
    • 1
  • Ziping Huang
    • 4
  • Siwei Xiong
    • 1
  • Jiashun Peng
    • 1
  • Jiuxiao Sun
    • 1
  • Xianze Yin
    • 1
  • Guoning Guo
    • 2
  • Bin Xiong
    • 2
    Email author
  • Xuyan Song
    • 2
  • Leping Huang
    • 1
  • Hua Wang
    • 3
  • Luoxin Wang
    • 1
    Email author
  1. 1.Key laboratory of textile fiber products, College of Materials Science and EngineeringWuhan Textile UniversityWuhanChina
  2. 2.Technology Center of Hubei Branch of China Tobacco Industry CorporationWuhanChina
  3. 3.High-Tech Organic Fibers Key Laboratory of Sichuan ProvinceSichuan Textile Science Research InstituteChengduChina
  4. 4.Middle School Attached to HUSTWuhanChina

Personalised recommendations