Novel solid polymer electrolyte based on PMMA:CH3COOLi effect of salt concentration on optical and conductivity studies

  • Sravanthi Kurapati
  • Sunita Sundari GunturiEmail author
  • Krishna Jyothi Nadella
  • Harikrishna ErothuEmail author
Original Paper


Novel solid polymer electrolyte (SPE) films based on poly(methyl methacrylate) (PMMA) and lithium acetate (CH3COOLi) with different weight ratios of PMMA:CH3COOLi wt% (60:40, 70:30, 80:20 wt%) were prepared by solution casting technique. XRD analysis confirmed the amorphous nature of Li–PMMA SPE films. FTIR analysis revealed the structural changes in polymer by complexation with Li salt. From the optical absorbance studies, the value of lowest energy band gap was found to be 3.06 eV for the composition, PMMA:CH3COOLi (60:40 wt%). From AC impedance studies, the highest value of ionic conductivity 8.21 × 10−5 S/cm at 303 K for the SPE film PMMA:CH3COOLi (60:40 wt%) is observed compared to the reported literature. From the results of Li–PMMA SPE film with high ionic conductivity, it is a promising material for the application of solid-state battery.


Li–PMMA SPE Ionic conductivity Band gap Dielectric measurements 



The authors would like to thank the management, Koneru Lakshmaiah Education Foundation (KLEF), for providing kind support for our work. K. Sravanthi is thankful to Dr K. Swapna for UV–visible spectroscopy measurements.


  1. 1.
    Qingqing Z, Kai L, Fei D, Xingjiang L (2017) Recent advances in solid polymer electrolytes for lithium batteries. Nano Res 10:4139–4174CrossRefGoogle Scholar
  2. 2.
    Scrosati B (2000) Recent advances in lithium ion battery materials. Electro chim Acta 45:2461–2466CrossRefGoogle Scholar
  3. 3.
    Stephan AM (2006) Review on gel polymer electrolytes for lithium batteries. Eur Polym J 42:21–42CrossRefGoogle Scholar
  4. 4.
    Ahmad S (2009) Polymer electrolytes: characteristics and peculiarities. Ionics 15:309–321CrossRefGoogle Scholar
  5. 5.
    Abraham KM, Jiang Z, Carroll B (1997) Highly conductive PEO-like polymer electrolytes. Chem Mater 9:1978–1988CrossRefGoogle Scholar
  6. 6.
    Li Z, Huang J, Liaw BY, Metzler V, Zhang J (2014) A review of lithium deposition in lithium-ion and lithium metal secondary batteries. J Power Sources 254:168–182CrossRefGoogle Scholar
  7. 7.
    Kang X (2004) Non-aqueous liquid electrolytes for lithium-based rechargeable batteries. Chem Rev 104:4303–4418CrossRefGoogle Scholar
  8. 8.
    Armand M (1983) Polymer solid electrolytes–an overview. Solid State Ion 9:745–754CrossRefGoogle Scholar
  9. 9.
    Anil A, Sharma AL (2017) Polymer electrolytes for lithium ion batteries: a critical study. Ionics 23:497–540CrossRefGoogle Scholar
  10. 10.
    Kalhoff J, Eshetu GG, Bresser D, Passerini S (2015) Safer electrolytes for lithium-ion batteries: state of the art and perspectives. Chem Sus Chem 821:54–75Google Scholar
  11. 11.
    Marcinek M et al (2015) Electrolytes for Li-ion transport–review. Solid State Ion 276:107–126CrossRefGoogle Scholar
  12. 12.
    Baskakova YV, Yarmolenko OV, Efimov ON (2012) Polymer gel electrolytes for lithium batteries. Russ Chem Rev 81:367–380CrossRefGoogle Scholar
  13. 13.
    Berthier C, Gorecki W, Minier M, Armand MB, Chabagno JM, Rigaud P (1983) Microscopic investigation of ionic conductivity in alkali metal salts-poly(ethylene oxide) adducts. Solid State Ion 11:91–95CrossRefGoogle Scholar
  14. 14.
    Cui Y, Xinmiao L, Jingchao C, Zili C, Qinglei W, Weisheng H, Xiaochen L, Zhihong L, Guanglei C, Jiwen F (2017) Facile and reliable in situ polymerization of poly(ethyl cyanoacrylate)-based polymer electrolytes toward flexible lithium batteries. Appl Mater Interfaces 9:8737–8741CrossRefGoogle Scholar
  15. 15.
    Jeddi K, Qazvini NT, Jafari SH, Khonakdar HA (2010) Enhanced ionic conductivity in PEO/PMMA glassy miscible blends: role of nano-confinement of minority component chains. J Polym Sci B Polym Phys 48:2065–2071CrossRefGoogle Scholar
  16. 16.
    Sequeira C, Santos D (2010) Polymer electrolytes fundamentals and applications. Elsevier, AmsterdamGoogle Scholar
  17. 17.
    Hellio D, Djabourov MP (2006) Physically and chemically cross linked gelatin gels. Macromol Symp 241:23–27CrossRefGoogle Scholar
  18. 18.
    Armand M, Tarascon JM (2008) Building better batteries. Nature 451:652–657CrossRefGoogle Scholar
  19. 19.
    Song JY, Wang YY, Wan CC (1999) Review of gel-type polymer electrolytes for lithium-ion batteries. J Power Sources 77:183–197CrossRefGoogle Scholar
  20. 20.
    Rao M, Geng X, Liao Y, Hu S, Li W (2012) Preparation and performance of gel polymer electrolyte based on electrospun polymer membrane and ionic liquid for lithium ion battery. J Membr Sci 37:399–400Google Scholar
  21. 21.
    Kim JK, Shin CR, Ahn JH, Matic A, Jacobsson P (2011) Highly porous LiMnPO4 in combination with an ionic liquid-based polymer gel electrolyte for lithium batteries. Electrochem Commun 13:1105–1108CrossRefGoogle Scholar
  22. 22.
    Stephan AM, Nahm KS, Kulandainathan MA, Ravi G, Wilson J (2006) Poly (vinylidene fluoride-hexafluoropropylene) (PVdF-HFP) based composite electrolytes for lithium batteries. Eur Polym J 42:1728–1734CrossRefGoogle Scholar
  23. 23.
    Alamgir M, Abraham KM (1993) Li ion conductive electrolytes based on poly (vinyl chloride). J Electrochem Soc 140:96CrossRefGoogle Scholar
  24. 24.
    Saito Y, Capigila C, Yamamoto H, Mustarelli P (2000) Ionic conduction mechanisms of polyvinylidene fluoride-hexafluoropropylene type polymer electrolytes with LiN(CF3SO2)2. J Electrochem Soc 147:1645CrossRefGoogle Scholar
  25. 25.
    Panero S, Scrosati B (2000) Gelification of liquid-polymer systems: a valid approach for the development of various types of polymer electrolyte membranes. J Power Sources 90:13–19CrossRefGoogle Scholar
  26. 26.
    Malcom P, Stevens P (2000) Polymer chemistry: an introduction. J Chem Educ 77:167–176Google Scholar
  27. 27.
    Shukla N, Thakur AK (2009) Role of salt concentration on conductivity optimization and structural phase separation in a solid polymer electrolyte based on PMMA-LiClO4. Ionics 15:357–367CrossRefGoogle Scholar
  28. 28.
    Appetecchi GB, Croce F, Scrosati B (1995) Kinetics and stability of the lithium electrode in poly(methylmethacrylate)-based gel electrolytes. Electrochim Acta 40:991–997CrossRefGoogle Scholar
  29. 29.
    Bohnke O, Frand G, Rezrazi M, Rousselot C, Truche C (1993) Fast ion transport in new lithium electrolytes gelled with PMMA-influence of polymer concentration. Solid State Ion 66:97–104CrossRefGoogle Scholar
  30. 30.
    Wieczorek W, Stevens JR (1997) Impedance spectroscopy and phase structure of polyether–Poly(methyl methacrylate)–LiCF3SO3 blend-based electrolytes. J Phys Chem B 101:1529–1534CrossRefGoogle Scholar
  31. 31.
    Ali AMM, Yahya MZA, Bahron H, Subban RHY, Harun MK, Atan I (2007) Impedance studies on plasticized PMMA-LiX [X: CF3SO3-, N(CF3SO2)2-] polymer electrolytes. Mater Lett 61:2026–2029CrossRefGoogle Scholar
  32. 32.
    Rajendran S, Uma T (2000) Characterization of plasticized PMMA–LiBF4 based solid polymer electrolytes. Bull Mater Sci 2:27–29CrossRefGoogle Scholar
  33. 33.
    Chen HW, Lin TP, Chang FC (2002) Ionic conductivity enhancement of the plasticized PMMA/LiClO4 polymer nano composite electrolyte containing clay. Polymer 43:5281–5288CrossRefGoogle Scholar
  34. 34.
    Senthil J, Nagarajan G, Neyvasagam K (2015) FTIR and ionic conductivity studies on PMMA based gel polymer electrolytes. Int J Enhanc Res Sci Technol Eng 4:76–80Google Scholar
  35. 35.
    ShahenoorBasha SK, SunitaSundari G, Vijay Kumar K, Rao MC (2017) Optical and dielectric properties of PVP based composite polymer electrolyte films. Polym Sci Ser A 59:554–565CrossRefGoogle Scholar
  36. 36.
    Abdelrazek EM, Hezma AM, El-khodary A, Elzayat AM (2016) Spectroscopic studies and thermal properties of PCL/PMMA biopolymer blend. Egypt J Basic Appl Sci 3:10–15CrossRefGoogle Scholar
  37. 37.
    Aziz Shujahadeen B, Abdulwahid Rebar T, Rsaul Hazhar A, Ahmed Hameed M (2016) In situ synthesis of CuS nanoparticle with a distinguishable SPR peak in NIR region. J Mater Sci Mater Electron 27:4163–4171CrossRefGoogle Scholar
  38. 38.
    Aziz SB, Abdullah OG, Hussein AM, Ahmed HM (2017) From insulating PMMA polymer to conjugated double bond behavior: green chemistry as a novel approach to fabricate small band gap polymers. Polymers 9:626CrossRefGoogle Scholar
  39. 39.
    Ravindra NM, Ganapathy P, Choi J (2007) Energy gap–refractive index relations in semiconductors—an overview. Infrared Phys Technol 50:21–29CrossRefGoogle Scholar
  40. 40.
    Su’ait MS, Ahmada A, Hamzaha H, Rahman MYA (2011) Effect of lithium salt concentrations on blended 49% poly(methyl methacrylate) grafted natural rubber and poly(methyl methacrylate) based solid polymer electrolyte. Electrochim Acta 57:123–131CrossRefGoogle Scholar
  41. 41.
    Uma T, Mahalingam T, Stimming U (2003) Mixed phase solid polymer electrolytes based on poly(methylmethacrylate) systems. Mater Chem Phys 82:478–483CrossRefGoogle Scholar
  42. 42.
    Aziz Shujahadeen B, Rasheed Mariwan A, Hussein Ahang M, Ahmed Hameed M (2017) Fabrication of polymer blend composites based on [PVA-PVP](1 − x):(Ag2S)x(0.01 ≤ x ≤ 0.03) with small optical band gaps: structural and optical Properties. Mater Sci Semicond Process 71:197–203CrossRefGoogle Scholar
  43. 43.
    Krishna Jyothi N, Vijaya Kumar K, Sunita Sundari G, Narayana Murthy P (2016) Ionic conductivity and battery characteristic studies of a new PAN-based Na + ion conducting gel polymer electrolyte system. Indian J Phys 90:289–296CrossRefGoogle Scholar
  44. 44.
    Gurusiddappa J, Madhuri W, Padma Suvarna R, Priya Dasan K (2016) Conductivity and dielectric behavior of polyethylene oxide-lithium perchlorate solid polymer electrolyte films. Indian J Adv Chem Sci 4:4–19Google Scholar
  45. 45.
    Anil A, Sharma AL, Kumar Dinesh, Sadiq M (2016) Structural and dielectric behaviour of blend polymer electrolyte based on PEO-PAN + LiPF6. Asian J Eng Appl Technol 5:4–7Google Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Department of PhysicsKoneru Lakshmaiah Education Foundation (KLEF)GunturIndia
  2. 2.Centre for Advanced Energy Studies (CAES)Koneru Lakshmaiah Education Foundation (KLEF)GunturIndia

Personalised recommendations