Advertisement

Peripherally functionalized based dendrimers as the template for synthesis of silver nanoparticles and investigation the affecting factors on their properties

  • Hassan Namazi
  • Ahmad Mohammad Pour Fard
  • Malihe Pooresmaeil
Original Paper
  • 11 Downloads

Abstract

Today, dendrimers (D) were introduced as a versatile template for the synthesis of nanoparticles (NPs). In this work, the stable silver nanoparticles (AgNPs) is successfully synthesized through the chemical reduction of AgNO3 using NaBH4 as a reducing agent. Synthesis of AgNPs was performed in the presence of different generations of citric acid-based dendrimers (G1, G2 and G3) and hydroxyl-terminated citric acid-based dendrimers (G1-OH, G2-OH and G3-OH). High-resolution transmission electron microscopy, electron diffraction and energy-dispersive X-ray analysis were used to characterize the synthesized AgNPs. UV–Vis results were used for the qualitative study of the synthesized AgNPs properties. With varying the molar ratio of dendrimer/Ag+, generations of dendrimers and the pH of the solution, the size and size distribution of AgNPs could be easily controlled at room temperature. The average diameter of the synthesized AgNPs in the presence of Gn-OH was in the range of 8–20 nm. Results show that G1-OH alkaline medium with 1:1 molar ratio of D/Ag is the optimum condition for the synthesis of AgNPs. All the obtained results from this study showed that controlling the medium conditions allows AgNPs with the desired size to be obtained.

Graphical abstract

Keywords

Dendrimer Citric acid Silver nanoparticles Hydroxyl-terminated dendrimer Chemical reduction 

Notes

Acknowledgements

We would like to acknowledge the Excellence Center of New Materials and Clean Chemistry, University of Tabriz (Grant #8419645105) and Research Center for Pharmaceutical Nanotechnology, Tabriz University of Medical Science for the financial supports for this research.

Compliance with ethical standards

Conflict of interest

The authors declare that there is no conflict of interest.

References

  1. 1.
    Shi X, Sun K, Balogh LP, Baker JR Jr (2006) Synthesis, characterization, and manipulation of dendrimer-stabilized iron sulfide nanoparticles. Nanotechnology 17(18):4554–4560CrossRefGoogle Scholar
  2. 2.
    Barman SR, Nain A, Jain S, Punjabi N, Mukherji S, Satija J (2018) Dendrimer as a multifunctional capping agent for metal nanoparticles for use in bioimaging, drug delivery and sensor applications. J Mater Chem B 6(16):2368–2384CrossRefGoogle Scholar
  3. 3.
    Namazi H, Toomari Hamrahloo Y (2011) Novel PH sensitive nanocarrier agents based on citric acid dendrimers containing conjugated β-cyclodextrins. Adv Pharm Bull 1(1):40–47PubMedPubMedCentralGoogle Scholar
  4. 4.
    Jain S, Singh A, Gupta G, Vijayan N, Sharma SN (2018) Precursor ratio optimizations for the synthesis of colloidal CZTS nanoparticles for photocatalytic degradation of malachite green. J Phys Chem Solids 122:8–18CrossRefGoogle Scholar
  5. 5.
    Pooresmaeil M, Namazi H (2018) Surface modification of graphene oxide with stimuli-responsive polymer brush containing β-cyclodextrin as a pendant group: preparation, characterization, and evaluation as controlled drug delivery agent. Colloids Surf B 172:17–25CrossRefGoogle Scholar
  6. 6.
    Pooresmaeil M, Namazi H (2018) β-Cyclodextrin grafted magnetic graphene oxide applicable as cancer drug delivery agent: synthesis and characterization. Mater Chem Phys 218:62–69CrossRefGoogle Scholar
  7. 7.
    Namazi H, Bahrami S, Entezami AA (2005) Synthesis and controlled release of biocompatible prodrugs of beta-cyclodextrin linked with PEG containing ibuprofen or indomethacin. Iran Polym J 14(10):921Google Scholar
  8. 8.
    Namvari M, Namazi H (2014) Synthesis of magnetic citric-acid-functionalized graphene oxide and its application in the removal of methylene blue from contaminated water. Polym Int 63(10):1881–1888CrossRefGoogle Scholar
  9. 9.
    Namazi H, Fathi F, Heydari A (2012) Nanoparticles based on modified polysaccharides. In: The delivery of nanoparticles. InTechGoogle Scholar
  10. 10.
    Mazlan M, Kalam A, Loo H-S, Al Bakri AM, Aziz MA, Khor C, Sukhairi M (2013) Development of nano-material (nano-silver) in electronic components application. Adv Environ Biol 7(12):3850–3858Google Scholar
  11. 11.
    Dong X-Y, Gao Z-W, Yang K-F, Zhang W-Q, Xu L-W (2015) Nanosilver as a new generation of silver catalysts in organic transformations for efficient synthesis of fine chemicals. Catal Sci Technol 5(5):2554–2574CrossRefGoogle Scholar
  12. 12.
    Ge L, Li Q, Wang M, Ouyang J, Li X, Xing MMQ (2014) Nanosilver particles in medical applications: synthesis, performance, and toxicity. Int J Nanomed 9:2399–2407Google Scholar
  13. 13.
    Yadollahi M, Namazi H, Aghazadeh M (2015) Antibacterial carboxymethyl cellulose/Ag nanocomposite hydrogels cross-linked with layered double hydroxides. Int J Biol Macromol 79:269–277CrossRefGoogle Scholar
  14. 14.
    Wang L, Zhang W, Zhao Y, Cao L (2018) Fabrication of silver nanoparticles loaded flowerlike CeF3 architectures and their antibacterial activity. J Phys Chem Solids 120:154–160CrossRefGoogle Scholar
  15. 15.
    Liang M, Zhang G, Feng Y, Li R, Hou P, Zhang J, Wang J (2018) Facile synthesis of silver nanoparticles on amino-modified cellulose paper and their catalytic properties. J Mater Sci 53(2):1568–1579CrossRefGoogle Scholar
  16. 16.
    Shenashen MA, El-Safty SA, Elshehy EA (2014) Synthesis, morphological control, and properties of silver nanoparticles in potential applications. Part Part Syst Charact 31(3):293–316CrossRefGoogle Scholar
  17. 17.
    Luo Y-L, Xu F, Chen Y-S, Jia C-Y (2010) Assembly, characterization of Ag nanoparticles in P(AAm-co-NVP)/CS semi-IPN, and swelling of the resulting composite hydrogels. Polym Bull 65(2):181–199CrossRefGoogle Scholar
  18. 18.
    Aziz S, Abidin Z, Arof A (2010) Influence of silver ion reduction on electrical modulus parameters of solid polymer electrolyte based on chitosan-silver triflate electrolyte membrane. Express Polym Lett 4(5):300–310CrossRefGoogle Scholar
  19. 19.
    Aziz SB (2017) Morphological and optical characteristics of chitosan((1 − x)):Cu(o)(x) (4 ≤ x ≤ 12) based polymer nano-composites: optical dielectric loss as an alternative method for Tauc’s model. Nanomaterials (Basel, Switzerland) 7(12):444Google Scholar
  20. 20.
    Pooresmaeil M, Namazi H (2018) Preparation and characterization of polyvinyl alcohol/β-cyclodextrin/GO-Ag nanocomposite with improved antibacterial and strength properties. Polym Adv Technol.  https://doi.org/10.1002/pat.4484 CrossRefGoogle Scholar
  21. 21.
    Rey J, Plivelic T, Rocha R, Tadokoro S, Torriani I, Muccillo E (2005) Synthesis of In2 O3 nanoparticles by thermal decomposition of a citrate gel precursor. J Nanopart Res 7(2–3):203–208CrossRefGoogle Scholar
  22. 22.
    Rakhshaei R, Namazi H (2017) A potential bioactive wound dressing based on carboxymethyl cellulose/ZnO impregnated MCM-41 nanocomposite hydrogel. Mater Sci Eng C 73:456–464CrossRefGoogle Scholar
  23. 23.
    Aziz SB, Abdulwahid RT, Rsaul HA, Ahmed HM (2016) In situ synthesis of CuS nanoparticle with a distinguishable SPR peak in NIR region. J Mater Sci: Mater Electron 27(5):4163–4171Google Scholar
  24. 24.
    Aziz SB, Abidin ZHZ (2014) Electrical and morphological analysis of chitosan: AgTf solid electrolyte. Mater Chem Phys 144(3):280–286CrossRefGoogle Scholar
  25. 25.
    Yang G, Xie J, Deng Y, Bian Y, Hong F (2012) Hydrothermal synthesis of bacterial cellulose/AgNPs composite: a “green” route for antibacterial application. Carbohyd Polym 87(4):2482–2487CrossRefGoogle Scholar
  26. 26.
    Mangalaraja RV, Ananthakmar S, Manohar P, Gnanam FD, Awano M (2004) Characterization of Mn0.8Zn0.2Fe2O4 synthesized by flash combustion technique. Mater Sci Eng 367(1):301–305CrossRefGoogle Scholar
  27. 27.
    Mauro E, Cinzia G, Leander T, Lorenzo V (2000) Sol-gel synthesis and characterization of Ag and Au nanoparticles in SiO2, TiO2, and ZrO2 thin films. J Am Ceram Soc 83(10):2385–2393Google Scholar
  28. 28.
    Manjamadha VP, Muthukumar K (2016) Ultrasound assisted green synthesis of silver nanoparticles using weed plant. Bioprocess Biosyst Eng 39(3):401–411CrossRefGoogle Scholar
  29. 29.
    McLeod MC, McHenry RS, Beckman EJ, Roberts CB (2003) Synthesis and stabilization of silver metallic nanoparticles and premetallic intermediates in perfluoropolyether/CO2 reverse micelle systems. J Phys Chem B 107(12):2693–2700CrossRefGoogle Scholar
  30. 30.
    Zielińska A, Skwarek E, Zaleska A, Gazda M, Hupka J (2009) Preparation of silver nanoparticles with controlled particle size. Procedia Chem 1(2):1560–1566CrossRefGoogle Scholar
  31. 31.
    Badawy AME, Luxton TP, Silva RG, Scheckel KG, Suidan MT, Tolaymat TM (2010) Impact of environmental conditions (pH, ionic strength, and electrolyte type) on the surface charge and aggregation of silver nanoparticles suspensions. Environ Sci Technol 44(4):1260–1266CrossRefGoogle Scholar
  32. 32.
    MacCuspie RI (2010) Colloidal stability of silver nanoparticles in biologically relevant conditions. J Nanopart Res 13(7):2893–2908CrossRefGoogle Scholar
  33. 33.
    Burt JL, Gutiérrez-Wing C, Miki-Yoshida M, José-Yacamán M (2004) Noble-metal nanoparticles directly conjugated to globular proteins. Langmuir 20(26):11778–11783CrossRefGoogle Scholar
  34. 34.
    Liu X, Gregurec D, Irigoyen J, Martinez A, Moya S, Ciganda R, Hermange P, Ruiz J, Astruc D (2016) Precise localization of metal nanoparticles in dendrimer nanosnakes or inner periphery and consequences in catalysis. Nat Commun 7:13152CrossRefGoogle Scholar
  35. 35.
    Lesniak W, Bielinska AU, Sun K, Janczak KW, Shi X, Baker JR, Balogh LP (2005) Silver/dendrimer nanocomposites as biomarkers: fabrication, characterization, in vitro toxicity, and intracellular detection. Nano Lett 5(11):2123–2130CrossRefGoogle Scholar
  36. 36.
    Liu H, Wang H, Guo R, Cao X, Zhao J, Luo Y, Shen M, Zhang G, Shi X (2010) Size-controlled synthesis of dendrimer-stabilized silver nanoparticles for X-ray computed tomography imaging applications. Polym Chem 1(10):1677–1683CrossRefGoogle Scholar
  37. 37.
    Liu H, Shen M, Zhao J, Zhu J, Xiao T, Cao X, Zhang G, Shi X (2013) Facile formation of folic acid-modified dendrimer-stabilized gold-silver alloy nanoparticles for potential cellular computed tomography imaging applications. Analyst 138(7):1979–1987CrossRefGoogle Scholar
  38. 38.
    Malgorzata K (2014) Dendrimers-fascinating nanoparticles in the application in medicine. Chemik 68(2):141–150Google Scholar
  39. 39.
    Alavidjeh MS, Haririan I, Khorramizadeh MR, Ghane ZZ, Ardestani MS, Namazi H (2010) Anionic linear-globular dendrimers: biocompatible hybrid materials with potential uses in nanomedicine. J Mater Sci Mater Med 21(4):1121–1133CrossRefGoogle Scholar
  40. 40.
    Namazi H, Toomari Y, Abbaspour H (2014) Fabrication of triblock ABA type peptide dendrimer based on glutamic acid dimethyl ester and PEG as a potential nano drug delivery agent. BioImpacts: BI 4(4):175–182CrossRefGoogle Scholar
  41. 41.
    Ruiz-Molina D, Vidal-Gancedo J, Ventosa N, Campo J, Palacio F, Rovira C, Veciana J (2004) Magneto-structural defects on a congested nanoscopic polyradical dendrimer. J Phys Chem Solids 65(4):737–744CrossRefGoogle Scholar
  42. 42.
    Lederer A, Voigt D, Appelhans D, Voit B (2006) Molar mass characterization and solution behaviour of poly(ether amide) dendrimers. Polym Bull 57(3):329–340CrossRefGoogle Scholar
  43. 43.
    Namazi H, Heydari A (2014) Synthesis of β-cyclodextrin-based dendrimer as a novel encapsulation agent. Polym Int 63(8):1447–1455CrossRefGoogle Scholar
  44. 44.
    Namazi H, Jafarirad S (2011) Controlled release of linear-dendritic hybrids of carbosiloxane dendrimer: the effect of hybrid’s amphiphilicity on drug-incorporation; hybrid–drug interactions and hydrolytic behavior of nanocarriers. Int J Pharm 407(1–2):167–173CrossRefGoogle Scholar
  45. 45.
    Wang H, Rempel GL (2016) Bimetallic Dendrimer-encapsulated Nanoparticle Catalysts. Polym Rev 56(3):486–511CrossRefGoogle Scholar
  46. 46.
    Namazi H, Adeli M (2003) Novel linear–globular thermoreversible hydrogel ABA type copolymers from dendritic citric acid as the A blocks and poly(ethyleneglycol) as the B block. Eur Polymer J 39(7):1491–1500CrossRefGoogle Scholar
  47. 47.
    Namazi H, Adeli M (2005) Dendrimers of citric acid and poly (ethylene glycol) as the new drug-delivery agents. Biomaterials 26(10):1175–1183CrossRefGoogle Scholar
  48. 48.
    Kalhapure RS, Kathiravan MK, Akamanchi KG, Govender T (2015) Dendrimers - from organic synthesis to pharmaceutical applications: an update. Pharm Dev Technol 20(1):22–40CrossRefGoogle Scholar
  49. 49.
    Namazi H, Jafarirad S (2011) Application of hybrid organic/inorganic dendritic ABA type triblock copolymers as new nanocarriers in drug delivery systems. Int J Polymeric Mater Polymeric Biomater 60(9):603–619CrossRefGoogle Scholar
  50. 50.
    Didehban K, Namazi H, Entezami AA (2009) Dendrimer-based hydrogen-bonded liquid crystalline complexes: synthesis and characterization. Eur Polymer J 45(6):1836–1844CrossRefGoogle Scholar
  51. 51.
    Alam AKMM, Beg MDH, Yunus RM, Mina MF, Maria KH, Mieno T (2016) Evolution of functionalized multi-walled carbon nanotubes by dendritic polymer coating and their anti-scavenging behavior during curing process. Mater Lett 167:58–60CrossRefGoogle Scholar
  52. 52.
    Moshiul Alam AKM, Beg MDH, Reddy Prasad DM, Khan MR, Mina MF (2012) Structures and performances of simultaneous ultrasound and alkali treated oil palm empty fruit bunch fiber reinforced poly(lactic acid) composites. Compos A Appl Sci Manuf 43(11):1921–1929CrossRefGoogle Scholar
  53. 53.
    Ayuk Eugene L, Ugwu Mariagoretti O, Aronimo Samuel B (2017) A review on synthetic methods of nanostructured materials. Chem Res J 2(5):97–123Google Scholar
  54. 54.
    Tavakoli A, Sohrabi M, Kargari A (2007) A review of methods for synthesis of nanostructured metals with emphasis on iron compounds. Chem Pap 61(3):151–170CrossRefGoogle Scholar
  55. 55.
    Anu Mary E, Saravanakumar MP (2017) A review on the classification, characterisation, synthesis of nanoparticles and their application. IOP Conf Ser Mater Sci Eng 263(3):032019CrossRefGoogle Scholar
  56. 56.
    Bronstein LM, Shifrina ZB (2009) Nanoparticles in dendrimers: from synthesis to application. Nanotechnol Russ 4(9):576CrossRefGoogle Scholar
  57. 57.
    Jiang G, Wang L, Chen W (2007) Studies on the preparation and characterization of gold nanoparticles protected by dendrons. Mater Lett 61(1):278–283CrossRefGoogle Scholar
  58. 58.
    Lang H, Maldonado S, Stevenson KJ, Chandler BD (2004) Synthesis and characterization of dendrimer templated supported bimetallic Pt-Au nanoparticles. J Am Chem Soc 126(40):12949–12956CrossRefGoogle Scholar
  59. 59.
    Knecht MR, Weir MG, Myers VS, Pyrz WD, Ye H, Petkov V, Buttrey DJ, Frenkel AI, Crooks RM (2008) Synthesis and characterization of Pt dendrimer-encapsulated nanoparticles: effect of the template on nanoparticle formation. Chem Mater 20(16):5218–5228CrossRefGoogle Scholar
  60. 60.
    Jin L, Yang S-P, Wu H-X, Huang W-W, Tian Q-W (2008) Preparation and characterization of silver nanoparticles with dendrimers as templates. J Appl Polym Sci 108(6):4023–4028CrossRefGoogle Scholar
  61. 61.
    Ye H, Scott RWJ, Crooks RM (2004) Synthesis, characterization, and surface immobilization of platinum and palladium nanoparticles encapsulated within amine-terminated poly(amidoamine) dendrimers. Langmuir 20(7):2915–2920CrossRefGoogle Scholar
  62. 62.
    Tang J, Chen W, Su W, Li W, Deng J (2013) Dendrimer-encapsulated silver nanoparticles and antibacterial activity on cotton fabric. J Nanosci Nanotechnol 13(3):2128–2135CrossRefGoogle Scholar
  63. 63.
    Crooks RM, Zhao M, Sun L, Chechik V, Yeung LK (2001) Dendrimer-encapsulated metal nanoparticles: synthesis, characterization, and applications to catalysis. Acc Chem Res 34(3):181–190CrossRefGoogle Scholar
  64. 64.
    Saleh TA, Al-Shalalfeh MM, Al-Saadi AA (2016) Graphene Dendrimer-stabilized silver nanoparticles for detection of methimazole using surface-enhanced Raman scattering with computational assignment. Sci Rep 6:32185CrossRefGoogle Scholar
  65. 65.
    Namazi H, Mohammad Pour A (2011) Preparation of gold nanoparticles in the presence of citric acid-based dendrimers containing periphery hydroxyl groups. Mater Chem Phys 129(1–2):189–194CrossRefGoogle Scholar
  66. 66.
    Mogurampelly S, Ganesan V (2015) Effect of nanoparticles on ion transport in polymer electrolytes. Macromolecules 48(8):2773–2786CrossRefGoogle Scholar
  67. 67.
    Aziz SB, Abdulwahid RT, Rasheed MA, Abdullah OG, Ahmed HM (2017) Polymer blending as a novel approach for tuning the SPR peaks of silver nanoparticles. Polymers 9(10):486CrossRefGoogle Scholar
  68. 68.
    Aziz SB, Abdullah RM, Rasheed MA, Ahmed HM (2017) Role of ion dissociation on dc conductivity and silver nanoparticle formation in PVA: AgNt based polymer electrolytes: deep insights to ion transport mechanism. Polymers 9(8):338CrossRefGoogle Scholar
  69. 69.
    Gustav M (1908) Beiträge zur Optik trüber Medien, speziell kolloidaler Metallösungen. Ann Phys 330(3):377–445CrossRefGoogle Scholar
  70. 70.
    Henglein A, Giersig M (1999) Formation of colloidal silver nanoparticles: capping action of citrate. J Phys Chem B 103(44):9533–9539CrossRefGoogle Scholar
  71. 71.
    Asharani I, Thirumalai D (2012) Synthesis of dendrimer-encapsulated silver nanoparticles and its catalytic activity on the reduction of 4-nitrophenol. J Chin Chem Soc 59(11):1455–1460CrossRefGoogle Scholar
  72. 72.
    Castonguay A, Kakkar AK (2010) Dendrimer templated construction of silver nanoparticles. Adv Coll Interface Sci 160(1):76–87CrossRefGoogle Scholar
  73. 73.
    Esumi K, Suzuki A, Aihara N, Usui K, Torigoe K (1998) Preparation of gold colloids with UV irradiation using dendrimers as stabilizer. Langmuir 14(12):3157–3159CrossRefGoogle Scholar
  74. 74.
    Myers VS, Weir MG, Carino EV, Yancey DF, Pande S, Crooks RM (2011) Dendrimer-encapsulated nanoparticles: new synthetic and characterization methods and catalytic applications. Chem Sci 2(9):1632–1646CrossRefGoogle Scholar
  75. 75.
    He Y, Wei F, Ma Z, Zhang H, Yang Q, Yao B, Huang Z, Li J, Zeng C, Zhang Q (2017) Green synthesis of silver nanoparticles using seed extract of Alpinia katsumadai, and their antioxidant, cytotoxicity, and antibacterial activities. RSC Adv 7(63):39842–39851CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Research Laboratory of Dendrimers and Nanopolymers, Faculty of ChemistryUniversity of TabrizTabrizIran
  2. 2.Research Center for Pharmaceutical Nanotechnology (RCPN)Tabriz University of Medical ScienceTabrizIran

Personalised recommendations