CdS quantum dot nanocomposite hydrogels based on κ-carrageenan and poly (acrylic acid), photocatalytic activity and dye adsorption behavior

  • Maryam Dargahi
  • Hossein GhasemzadehEmail author
  • Azim Torkaman
Original Paper


Novel CdS quantum dot nanocomposite hydrogels (QD-NCH) were synthesized by in situ copolymerization cross-linking method using acrylic acid and κ-carrageenan in mild condition followed by embedding CdS QDs. The structure and morphology of CdS QD-NCH were characterized by FT-IR, SEM, TEM, and TGA/DTG techniques. The optical properties of the CdS QD-NCH were studied by UV–Vis and fluorescence spectroscopy. The CdS QD-NCH was applied for the adsorption of cationic dyes: crystal violet (CV) and malachite green (MG). The influence of experimental condition, e.g., adsorbent dosage, pH, contact time, initial dye concentration, and temperature on the dye adsorption behavior was studied. The adsorption kinetic followed from the pseudo-first-order model. The experimental isotherm data also well fitted with Freundlich and Langmuir isotherm models for the adsorption of CV and MG, respectively.

Graphical abstract


Quantum dot Nanocomposite hydrogel κ-Carrageenan Dye adsorption Photocatalytic activity 


  1. 1.
    Mahdavinia GR, Massoudi A, Baghban A, Shokri E (2014) Study of adsorption of cationic dye on magnetic kappa-carrageenan/PVA nanocomposite hydrogels. J Environ Chem Eng 2:1578–1587. CrossRefGoogle Scholar
  2. 2.
    Batista RA, Espitia PJP, Quintans JSS, Freitas MM, Cerqueira MA, Teixeira JA, Cardoso JC (2019) Hydrogel as an alternative structure for food packaging systems. Carbohydr Polym 205:106–116. CrossRefPubMedGoogle Scholar
  3. 3.
    Ferreira NN, Ferreira LMB, Cardoso VMO, Boni FI, Souza ALR, Gremião MPD (2018) Recent advances in smart hydrogels for biomedical applications: from self-assembly to functional approaches. Eur Polym J 99:117–133. CrossRefGoogle Scholar
  4. 4.
    Yetisen AK, Butt H, Volpatti LR, Pavlichenko I, Humar M, Kwok SJJ, Koo H, Kim KS, Naydenova I, Khademhosseini A, Kwang Hahn S, Yun SH (2016) Photonic hydrogel sensors. Biotechnol Adv 34:250–271. CrossRefPubMedGoogle Scholar
  5. 5.
    Zehhaf A, Benyoucef A, Quijada C, Taleb S, Morallon E (2015) Algerian natural montmorillonites for arsenic(III) removal in aqueous solution. Int J Environ Sci Technol 12(2):595–602. CrossRefGoogle Scholar
  6. 6.
    Zehhaf A, Benyoucef A, Berenguer R, Quijada C, Taleb S, Morallon E (2012) Lead ion adsorption from aqueous solutions in modified Algerian Montmorillonites. J Therm Anal Calorim 110:1069–1077. CrossRefGoogle Scholar
  7. 7.
    Mekhloufi A, Zehhaf A, Benyoucef A, Quijada C, Morallon E (2013) Removal of 8-quinolinecarboxylic acid pesticide from aqueous solution by adsorption on activated montmorillonites. Environ Monit Assess 185:10365–10375. CrossRefPubMedGoogle Scholar
  8. 8.
    Suhas Gupta VK, Carrott PJM, Singh R, Chaudhary M, Kushwaha S (2016) Cellulose: a review as natural, modified and activated carbon adsorbent. Biores Technol 216:1066–1076. CrossRefGoogle Scholar
  9. 9.
    Melo CR, Riella HG, Kuhnen NC, Angioletto E, Melo AR, Bernardin AM, Rocha MR, Silva L (2012) Synthesis of 4A zeolites from kaolin for obtaining 5A zeolites through ionic. Mater Sci Eng, B 177:345–349. CrossRefGoogle Scholar
  10. 10.
    Mahinroosta M, Jomeh Farsangi Z, Allahverdi A, Shakoori Z (2018) Hydrogels as intelligent materials: a brief review of synthesis, properties and applications. Mater Today Chem 8:42–55. CrossRefGoogle Scholar
  11. 11.
    Bardajee GR, Hooshyar Z (2013) Optical properties of water soluble CdSe quantum dots modified by a novel biopolymer based on sodium alginate. Spectrochim Acta Part A Mol Biomol Spectrosc 114:622–626. CrossRefGoogle Scholar
  12. 12.
    Zhou W, Coleman JJ (2016) Semiconductor quantum dots. Curr Opin Solid State Mater Sci 20(6):352–360. CrossRefGoogle Scholar
  13. 13.
    Costas-Mora I, Romero V, Lavilla I, Bendicho C (2014) An overview of recent advances in the application of quantum dots as luminescent probes to inorganic-trace analysis. TrAC Trends Anal Chem 57:64–72. CrossRefGoogle Scholar
  14. 14.
    Shen LM, Liu J (2016) New development in carbon quantum dots technical applications. Talanta 156–157:245–256. CrossRefPubMedGoogle Scholar
  15. 15.
    Jamieson T, Bakhshi R, Petrova D, Pocock R, Imani M, Seifalian AM (2007) Biological applications of quantum dots. Biomaterials 28(31):4717–4732. CrossRefPubMedGoogle Scholar
  16. 16.
    Bera D, Qian L, Tseng T-K, Holloway PH (2010) Quantum dots and their multimodal applications: a review. Materials 3(4):2260–2345. CrossRefPubMedCentralGoogle Scholar
  17. 17.
    Loef R, Houtepen AJ, Talgorn E, Schoonman J, Goossens A (2009) Study of electronic defects in CdSe quantum dots and their involvement in quantum dot solar cells. Nano Lett 9(2):856–859. CrossRefPubMedGoogle Scholar
  18. 18.
    Sun H, Wu L, Wei W, Qu X (2013) Recent advances in graphene quantum dots for sensing. Mater Today 16(11):433–442. CrossRefGoogle Scholar
  19. 19.
    Wu ZL, Gao MX, Wang TT, Wan XY, Zheng LL, Huang CZ (2014) A general quantitative pH sensor developed with dicyandiamide N-doped high quantum yield graphene quantum dots. Nanoscale 6(7):3868–3874. CrossRefPubMedGoogle Scholar
  20. 20.
    Samia AC, Dayal S, Burda C (2006) Quantum dot-based energy transfer: perspectives and potential for applications in photodynamic therapy. Photochem Photobiol 82(3):617–625. CrossRefPubMedGoogle Scholar
  21. 21.
    Ghaderi S, Ramesh B, Seifalian AM (2011) Fluorescence nanoparticles “quantum dots” as drug delivery system and their toxicity: a review. J Drug Target 19(7):475–486. CrossRefPubMedGoogle Scholar
  22. 22.
    Chan WCW, Maxwell DJ, Gao X, Bailey RE, Han M, Nie S (2002) Luminescent quantum dots for multiplexed biological detection and imaging. Curr Opin Biotechnol 13(1):40–46. CrossRefPubMedGoogle Scholar
  23. 23.
    Albero J, Clifford JN, Palomares E (2014) Quantum dot based molecular solar cells. Coord Chem Rev 263–264:53–64. CrossRefGoogle Scholar
  24. 24.
    Foubert A, Beloglazova NV, Rajkovic A, Sas B, Madder A, Goryacheva IY, De Saeger S (2016) Bioconjugation of quantum dots: review and impact on future application. TrAC Trends Anal Chem 83:31–48. CrossRefGoogle Scholar
  25. 25.
    Aguilera-Sigalat J, Bradshaw D (2016) Synthesis and applications of metal-organic framework–quantum dot (QD@MOF) composites. Coord Chem Rev 307:267–291. CrossRefGoogle Scholar
  26. 26.
    Shamsipur M, Rajabi HR (2014) Study of photocatalytic activity of ZnS quantum dots as efficient nanoparticles for removal of methyl violet: effect of ferric ion doping. Spectrochim Acta Part A Mol Biomol Spectrosc 122:260–267. CrossRefGoogle Scholar
  27. 27.
    Rajabi HR, Khani O, Shamsipur M, Vatanpour V (2013) High-performance pure and Fe3+-ion doped ZnS quantum dots as green nanophotocatalysts for the removal of malachite green under UV-light irradiation. J Hazard Mater 250–251:370–378. CrossRefPubMedGoogle Scholar
  28. 28.
    Ding D, Lan W, Yang Z, Zhao X, Chen Y, Wang J, Zhang X, Zhang Y, Su Q, Xie E (2016) A simple method for preparing ZnO foam/carbon quantum dots nanocomposite and their photocatalytic applications. Mater Sci Semicond Process 47:25–31. CrossRefGoogle Scholar
  29. 29.
    Zhao D, Yang C-F (2016) Recent advances in the TiO2/CdS nanocomposite used for photocatalytic hydrogen production and quantum-dot-sensitized solar cells. Renew Sustain Energy Rev 54:1048–1059. CrossRefGoogle Scholar
  30. 30.
    Kim HS, Yoon KB (2014) Preparation and characterization of CdS and PbS quantum dots in zeolite Y and their applications for nonlinear optical materials and solar cell. Coord Chem Rev 263–264:239–256. CrossRefGoogle Scholar
  31. 31.
    Rauf IA, Rezai P (2017) A review of materials selection for optimized efficiency in quantum dot sensitized solar cells: a simplified approach to reviewing literature data. Renew Sustain Energy Rev 73:408–422. CrossRefGoogle Scholar
  32. 32.
    Zhang N, Zhang L, Ruan YF, Zhao WW, Xu JJ, Chen HY (2017) Quantum-dots-based photoelectrochemical bioanalysis highlighted with recent examples. Biosens Bioelectron 94:207–218. CrossRefPubMedGoogle Scholar
  33. 33.
    Zhou H, Liu J, Zhang S (2015) Quantum dot-based photoelectric conversion for biosensing applications. TrAC Trends Anal Chem 67:56–73. CrossRefGoogle Scholar
  34. 34.
    Wang R, Han M, Zhao Q, Ren Z, Xu C, Hu N, Ning H, Song S, Lee J-M (2017) Construction of 3D CoO quantum dots/graphene hydrogels as binder-free electrodes for ultra-high rate energy storage applications. Electrochim Acta 243:152–161. CrossRefGoogle Scholar
  35. 35.
    Ruiz-Palomero C, Soriano ML, Benítez-Martínez S, Valcárcel M (2017) Photoluminescent sensing hydrogel platform based on the combination of nanocellulose and S, N-codoped graphene quantum dots. Sens Actuat B Chem 245:946–953. CrossRefGoogle Scholar
  36. 36.
    Ruiz-Palomero C, Benítez-Martínez S, Soriano ML, Valcárcel M (2017) Fluorescent nanocellulosic hydrogels based on graphene quantum dots for sensing laccase. Anal Chim Acta 974:93–99. CrossRefPubMedGoogle Scholar
  37. 37.
    Cayuela A, Soriano ML, Kennedy SR, Steed JW, Valcarcel M (2016) Fluorescent carbon quantum dot hydrogels for direct determination of silver ions. Talanta 151:100–105. CrossRefPubMedGoogle Scholar
  38. 38.
    Wang Z, Jia J, Zhu M, Li X, Liu J, Wang Y, Zhong H (2016) Double network hydrogel embedded with quantum dots: enhanced visual performance for holographic 3D display. Synth Met 222:132–136. CrossRefGoogle Scholar
  39. 39.
    Zhang X, Ding S, Cao S, Zhu A, Shi G (2016) Functional surface engineering of quantum dot hydrogels for selective fluorescence imaging of extracellular lactate release. Biosens Bioelectron 80:315–322. CrossRefPubMedGoogle Scholar
  40. 40.
    Sahiner N, Sel K, Meral K, Onganer Y, Butun S, Ozay O, Silan C (2011) Hydrogel templated CdS quantum dots synthesis and their characterization. Colloids Surf A 389(1–3):6–11. CrossRefGoogle Scholar
  41. 41.
    Jiang R, Zhu H, Yao J, Fu Y, Guan Y (2012) Chitosan hydrogel films as a template for mild biosynthesis of CdS quantum dots with highly efficient photocatalytic activity. Appl Surf Sci 258(8):3513–3518. CrossRefGoogle Scholar
  42. 42.
    Bardajee GR, Hooshyar Z (2011) Synthesis and fluorescent properties investigation of CdSe quantum dots embedded in a biopolymer based on poly((2-dimethylaminoethyl) methacrylate) grafted onto κ-Carrageenan. Colloids Surf A 387(1–3):92–98. CrossRefGoogle Scholar
  43. 43.
    Hosseinzadeh H, Bahador N (2017) Novel CdS quantum dots templated hydrogel nanocomposites: synthesis, characterization, swelling and dye adsorption properties. J Mol Liq 240:630–641. CrossRefGoogle Scholar
  44. 44.
    Pourjavadi A, Ghasemzadeh H (2007) Carrageenan-g-poly(acrylamide)/poly(vinylsulfonic acid, sodium salt) as a novel semi-IPN hydrogel: synthesis, characterization, and swelling behavior. Polym Eng Sci 47(9):1388–1395. CrossRefGoogle Scholar
  45. 45.
    Pourjavadi A, Ghasemzadeh H, Mojahedi F (2009) Swelling properties of CMC-g-poly (AAm-co-AMPS) superabsorbent hydrogel. J Appl Polym Sci 113(6):3442–3449. CrossRefGoogle Scholar
  46. 46.
    Wang Q, Gao Z (2016) A constitutive model of nanocomposite hydrogels with nanoparticle crosslinkers. J Mech Phys Solids 94:127–147. CrossRefGoogle Scholar
  47. 47.
    Appel EA, Tibbitt M, Webber MJ, Mattix BA, Veiseh O, Langer R (2015) Self-assembled hydrogels utilizing polymer–nanoparticle interactions. Nat Commun. CrossRefPubMedPubMedCentralGoogle Scholar
  48. 48.
    Song Y, Li N, Chen D, Xu Q, Li H, He J, Lu J (2018) 3D ordered MoP inverse opals deposited with CdS quantum dots for enhanced visible light photocatalytic activity. Appl Catal B 238:255–262. CrossRefGoogle Scholar
  49. 49.
    Iñarritu I, Torres E, Topete A, Campos-Terán J (2017) Immobilization effects on the photocatalytic activity of CdS quantum Dots-Horseradish peroxidase hybrid nanomaterials. J Colloid Interface Sci 506:36–45. CrossRefPubMedGoogle Scholar
  50. 50.
    Samadi-Maybodi A, Sadeghi-Maleki MR (2016) In-situ synthesis of high stable CdS quantum dots and their application for photocatalytic degradation of dyes. Spectrochim Acta Part A Mol Biomol Spectrosc 152:156–164. CrossRefGoogle Scholar
  51. 51.
    Hiragond CB, Khanna PK, More PV (2018) Probing the real-time photocatalytic activity of CdS QDs sensitized conducting polymers: featured PTh, PPy and PANI. Vacuum 155:159–168. CrossRefGoogle Scholar
  52. 52.
    Li S (2010) Removal of crystal violet from aqueous solution by sorption into semi-interpenetrated networks hydrogels constituted of poly(acrylic acid-acrylamide-methacrylate) and amylose. Biores Technol 101(7):2197–2202. CrossRefGoogle Scholar
  53. 53.
    Al-Rashdi B, Tizaoui C, Hilal N (2012) Copper removal from aqueous solutions using nano-scale diboron trioxide/titanium dioxide (B2O3/TiO2) adsorbent. Chem Eng J 183:294–302. CrossRefGoogle Scholar
  54. 54.
    Largitte L, Pasquier R (2016) A review of the kinetics adsorption models and their application to the adsorption of lead by an activated carbon. Chem Eng Res Des 109:495–504. CrossRefGoogle Scholar
  55. 55.
    Panic VV, Velickovic SJ (2014) Removal of model cationic dye by adsorption onto poly(methacrylic acid)/zeolite hydrogel composites: kinetics, equilibrium study and image analysis. Sep Purif Technol 122:384–394. CrossRefGoogle Scholar
  56. 56.
    Patel YN, Patel MP (2013) Adsorption of azo dyes from water by new poly (3-acrylamidopropyl)-trimethylammonium chloride-co-N, N-dimethylacrylamide superabsorbent hydrogel—equilibrium and kinetic studies. J Environ Chem Eng 1(4):1368–1374. CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  • Maryam Dargahi
    • 1
  • Hossein Ghasemzadeh
    • 1
    Email author
  • Azim Torkaman
    • 1
  1. 1.Department of Chemistry, Faculty of ScienceImam Khomeini International UniversityQazvinIran

Personalised recommendations