Preparation of Ag2Se QDs with excellent aqueous dispersion stability by organic coating with aqueous ATRP

  • Yoshio NakaharaEmail author
  • Yuki Kunitsu
  • Nobuhiko Ozaki
  • Mutsuo Tanaka
  • Setsuko Yajima
Original Paper


In this article, water-dispersible Ag2Se quantum dots (QDs) were prepared by the facile and environmental-friendly method. In our approach, atom transfer radical polymerization (ATRP) was adopted in aqueous media to grow polymer chains from the surface of Ag2Se QDs. The aqueous ATRP allows the very mild synthetic conditions. In the present work, the polymerization reaction of methoxy[oligo(ethylene glycol)] methacrylate (OEGMA) was carried out at room temperature under aqueous conditions after the incorporation of 2-bromopropionyl moiety as the ATRP initiator on the surface of Ag2Se QDs by the ligand exchange method. OEGMA-coated Ag2Se QDs were successfully obtained without significant morphological change. The aqueous dispersion stability of OEGMA-coated Ag2Se QDs was compared with that of conventional water-dispersible Ag2Se QDs prepared by the simple modification with 11-mercaptoundecanoic acid. As a result, OEGMA-coated Ag2Se QDs showed the extremely high aqueous dispersion stability.


Ag2Se quantum dot Organic coating Methoxy[oligo(ethylene glycol)] methacrylate Aqueous dispersion stability Aqueous atom transfer radical polymerization 



This study was financially supported by Kansai Research Foundation for technology promotion.

Supplementary material

289_2018_2627_MOESM1_ESM.pdf (429 kb)
Supplementary material 1 (PDF 429 kb)


  1. 1.
    Medintz IL, Uyeda HT, Goldman ER, Mattoussi H (2005) Quantum dot bioconjugates for imaging, labelling and sensing. Nat Mater 4:435–446. CrossRefPubMedGoogle Scholar
  2. 2.
    Yang J, Ying JY (2011) Nanocomposites of Ag2S and noble metals. Angew Chem Int Ed 50(20):4637–4643. CrossRefGoogle Scholar
  3. 3.
    Tong J, Yang X, Xu Y, Li W, Tang J, Song H, Zhou Y (2017) Efficient top-illuminated organic-quantum dots hybrid tandem solar cells with complementary absorption. ACS Photonics 4(5):1172–1177. CrossRefGoogle Scholar
  4. 4.
    Kim S, Lim YT, Soltesz EG, De Grand AM, Lee J, Nakayama A, Parker JA, Mihaljevic T, Laurence RG, Dor DM, Cohn LH, Bawendi MG, Frangioni JV (2003) Near-infrared fluorescent type II quantum dots for sentinel lymph node mapping. Nat Biotechnol 22:93–97. CrossRefPubMedPubMedCentralGoogle Scholar
  5. 5.
    Zhang W, Chen G, Wang J, Ye BC, Zhong X (2009) Design and synthesis of highly luminescent near-infrared-emitting water-soluble CdTe/CdSe/ZnS core/shell/shell quantum dots. Inorg Chem 48(20):9723–9731. CrossRefPubMedGoogle Scholar
  6. 6.
    Depalo N, Corricelli M, De Paola I, Valente G, Iacobazzi RM, Altamura E, Debellis D, Comegna D, Fanizza E, Denora N, Laquintana V, Mavelli F, Striccoli M, Saviano M, Agostiano A, Del Gatto A, Zaccaro L, Curri ML (2017) NIR emitting nanoprobes based on cyclic RGD motif conjugated PbS quantum dots for integrin-targeted optical bioimaging. ACS Appl Mater Interface 9(49):43113–43126. CrossRefGoogle Scholar
  7. 7.
    Urano Y, Asanuma D, Hama Y, Koyama Y, Barrett T, Kamiya M, Nagano T, Watanabe T, Hasegawa A, Choyke PL, Kobayashi H (2009) Selective molecular imaging of viable cancer cells with pH-activatable fluorescence probes. Nat Med 15:104–109. CrossRefPubMedGoogle Scholar
  8. 8.
    Achilefu S (2010) The insatiable quest for near-infrared fluorescent probes for molecular imaging. Angew Chem Int Ed 49(51):9816–9818. CrossRefGoogle Scholar
  9. 9.
    Sahu A, Qi L, Kang MS, Deng D, Norris DJ (2011) Facile synthesis of silver chalcogenide (Ag2E; E = Se, S, Te) semiconductor nanocrystals. J Am Chem Soc 133(17):6509–6512. CrossRefPubMedGoogle Scholar
  10. 10.
    Zhang Y, Hong G, Zhang Y, Chen G, Li F, Dai H, Wang Q (2012) Ag2S quantum dot: a bright and biocompatible fluorescent nanoprobe in the second near-infrared window. ACS Nano 6(5):3695–3702. CrossRefPubMedPubMedCentralGoogle Scholar
  11. 11.
    Zhu CN, Jiang P, Zhang ZL, Zhu DL, Tian ZQ, Pang DW (2013) Ag2Se quantum dots with tunable emission in the second near-infrared window. ACS Appl Mater Interface 5(4):1186–1189. CrossRefGoogle Scholar
  12. 12.
    Dong B, Li C, Chen G, Zhang Y, Zhang Y, Deng M, Wang Q (2013) Facile synthesis of highly photoluminescent Ag2Se quantum dots as a new fluorescent probe in the second near-infrared window for in vivo imaging. Chem Mater 25(12):2503–2509. CrossRefGoogle Scholar
  13. 13.
    Wu Q, Zhou M, Shi J, Li Q, Yang M, Zhang Z (2017) Synthesis of water-soluble Ag2S quantum dots with fluorescence in the second near-infrared window for turn-on detection of Zn(II) and Cd(II). Anal Chem 89(12):6616–6623. CrossRefPubMedGoogle Scholar
  14. 14.
    Yarema M, Pichler S, Sytnyk M, Seyrkammer R, Lechner RT, Fritz-Popovski G, Jarzab D, Szendrei K, Resel R, Korovyanko O, Loi MA, Paris O, Hesser G, Heiss W (2011) Infrared emitting and photoconducting colloidal silver chalcogenide nanocrystal quantum dots from a silylamide-promoted synthesis. ACS Nano 5(5):3758–3765. CrossRefPubMedGoogle Scholar
  15. 15.
    Zhang J, Peng D, Lu H, Liu Q (2008) Attenuating the toxicity of cisplatin by using selenosulfate with reduced risk of selenium toxicity as compared with selenite. Toxicol Appl Pharmacol 226(3):251–259. CrossRefPubMedGoogle Scholar
  16. 16.
    Cao Q, Che R (2014) Synthesis of near-infrared fluorescent, elongated ring-like Ag2Se colloidal nanoassemblies. RSC Adv 4:16641–16646. CrossRefGoogle Scholar
  17. 17.
    Tian Q, Deng D, Zhang Z, Li Y, Yang Y, Guo X (2017) Facile synthesis of Ag2Se quantum dots and their application in Dye/Ag2Se co-sensitized solar cells. J Mater Sci 52(20):12131–12140. CrossRefGoogle Scholar
  18. 18.
    Motornov M, Sheparovych R, Lupitskyy R, MacWilliams E, Minko S (2007) Responsive colloidal systems: reversible aggregation and fabrication of superhydrophobic surfaces. J Colloid Interface Sci 310(2):481–488. CrossRefPubMedGoogle Scholar
  19. 19.
    Monteiro S, Dias A, Mendes AM, Mendes JP, Serra AC, Rocha N, Coelho JFJ, Magalhães FD (2014) Stabilization of nano-TiO2 aqueous dispersions with poly(ethylene glycol)-b-poly(4-vinyl pyridine) block copolymer and their incorporation in photocatalytic acrylic varnishes. Prog Org Coat 77(11):1741–1749. CrossRefGoogle Scholar
  20. 20.
    Huang C, Neoh KG, Kang ET (2012) Combined ATRP and ‘Click’ chemistry for designing stable tumor-targeting superparamagnetic iron oxide nanoparticles. Langmuir 28(1):563–571. CrossRefPubMedGoogle Scholar
  21. 21.
    Choi J, Hui CM, Schmitt M, Pietrasik J, Margel S, Matyjazsewski K, Bockstaller MR (2013) Effect of polymer-graft modification on the order formation in particle assembly structures. Langmuir 29(21):6452–6459. CrossRefPubMedGoogle Scholar
  22. 22.
    Xie G, Ding H, Daniel WFM, Wang Z, Pietrasik J, Sheiko SS, Matyjaszewski K (2016) Preparation of titania nanoparticles with tunable anisotropy and branched structures from core–shell molecular bottlebrushes. Polymer 98(19):481–486. CrossRefGoogle Scholar
  23. 23.
    Chan JW, Huang A, Uhrich KE (2016) Self-assembled amphiphilic macromolecule coatings: comparison of grafting-from and grafting-to approaches for bioactive delivery. Langmuir 32(20):5038–5047. CrossRefPubMedGoogle Scholar
  24. 24.
    Wang Z, Mahoney C, Yan J, Lu Z, Ferebee R, Luo D, Bockstaller MR, Matyjaszewski K (2016) Preparation of well-defined poly(styrene-co-acrylonitrile)/ZnO hybrid nanoparticles by an efficient ligand exchange strategy. Langmuir 32(49):13207–13213. CrossRefPubMedGoogle Scholar
  25. 25.
    Nuss S, Böttcher H, Wurm H, Hallensleben ML (2001) Gold nanoparticles with covalently attached polymer chains. Angew Chem Int Ed 40(21):4016–4018. CrossRefGoogle Scholar
  26. 26.
    Ohno K, Koh K, Tsujii Y, Fukuda T (2002) Synthesis of gold nanoparticles coated with well-defined, high-density polymerbrushes by surface-initiated living radical polymerization. Macromolecules 35(24):8989–8993. CrossRefGoogle Scholar
  27. 27.
    Duan H, Kuang M, Zhang G, Wang D, Kurth DG, Mohwald H (2005) pH-responsive capsules derived from nanocrystal templating. Langmuir 21(24):11495–11499. CrossRefPubMedGoogle Scholar
  28. 28.
    Wang XS, Lascelles SF, Jackson RA, Armes SP (1999) Facile synthesis of well-defined water-soluble polymers via atom transfer radical polymerization in aqueous media at ambient temperature. Chem Commun. CrossRefGoogle Scholar
  29. 29.
    Wang XS, Jackson RA, Armes SP (2000) Facile synthesis of acidic copolymers via atom transfer radical polymerization in aqueous media at ambient temperature. Macromolecules 33(2):255–257. CrossRefGoogle Scholar
  30. 30.
    Perruchot C, Khan MA, Kamitsi A, Armes SP (2001) Synthesis of well-defined, polymer-grafted silica particles by aqueous ATRP. Langmuir 17(15):4479–4481. CrossRefGoogle Scholar
  31. 31.
    Lou X, Wang C, He L (2007) Core-shell Au nanoparticle formation with DNA-polymer hybrid coatings using aqueous ATRP. Biomacromolecules 8(5):1385–1390. CrossRefPubMedGoogle Scholar
  32. 32.
    Gui R, Wan A, Liu X, Yuan W, Jin H (2014) Water-soluble multidentate polymers compactly coating Ag2S quantum dots with minimized hydrodynamic size and bright emission tunable from red to second near-infrared region. Nanoscale 6(10):5467–5473. CrossRefPubMedGoogle Scholar
  33. 33.
    Yang M, Gui R, Jin H, Wang Z, Zhang F, Xia J, Bi S, Xia Y (2015) Ag2Te quantum dots with compact surface coatings of multivalent polymers: ambient one-pot aqueous synthesis and the second near-infrared bioimaging. Colloids Surf B Biointerfaces 126(1):115–120. CrossRefPubMedGoogle Scholar
  34. 34.
    Wang XS, Armes SP (2000) Facile atom transfer radical polymerization of methoxy-capped oligo(ethylene glycol) methacrylate in squeous media at ambient temperature. Macromolecules 33(18):6640–6647. CrossRefGoogle Scholar
  35. 35.
    Ienaga T, Okada S, Nakahara Y, Watanabe M, Tamai T, Yajima S, Kimura K (2017) Comparison of physical adsorption strength of protective agents via ligand exchange of silver nanoparticles prepared by vacuum evaporation on running oil substrate. Bull Chem Soc Jpn 90(11):1251–1258. CrossRefGoogle Scholar
  36. 36.
    Ozaki N, Takeuchi K, Hino Y, Nakatani Y, Yasuda T, Ohkouchi S, Watanabe E, Ohsato H, Ikeda N, Sugimoto Y, Clarke E, Hogg RA (2014) Integration of emission-wavelength-controlled InAs quantum dots for ultrabroadband near-infrared light source. Nanomater Nanotechnol 4:26. CrossRefGoogle Scholar
  37. 37.
    Tanaka M, Sawaguchi T, Sato Y, Yoshioka K, Niwa O (2009) Synthesis of phosphorylcholine-oligoethylene glycol-alkane thiols and their suppressive effect on non-specific adsorption of proteins. Tetrahedron Lett 50(28):4092–4095. CrossRefGoogle Scholar
  38. 38.
    Nakahara Y, Nakamura J, Shirotani N, Kimura K (2012) Synthesis of amphiphilic copolymers bearing a spirobenzopyran moiety at the end group and their photoresponsive micellar behaviors in water. Chem Lett 41(10):1142–1144. CrossRefGoogle Scholar
  39. 39.
    Saponjic ZV, Csencsits R, Rajh T, Dimitrijevic NM (2003) Self-assembly of TOPO-derivatized silver nanoparticles into multilayered film. Chem Mater 15(23):4521–4526. CrossRefGoogle Scholar
  40. 40.
    Liu X, Gao Y, Wang X, Wu S, Tang Z (2011) Preparation of stable, water-soluble, highly luminescence quantum dots with small hydrodynamic sizes. J Nanosci Nanotechnol 11(3):1941–1949. CrossRefPubMedGoogle Scholar
  41. 41.
    Qin B, Zhao Z, Song R, Shanbhag S, Tang Z (2008) A temperature-driven reversible phase transfer of 2-(diethylamino)ethanethiol-stabilized CdTe Nanoparticles. Angew Chem Int Ed 47(51):9875–9878. CrossRefGoogle Scholar
  42. 42.
    Sener G, Uzun L, Denizli A (2014) Colorimetric sensor array based on gold nanoparticles and amino acids for identification of toxic metal ions in water. ACS Appl. Mater. Interface 6(21):18395–18400. CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Faculty of Systems EngineeringWakayama UniversityWakayamaJapan
  2. 2.Saitama Institute of TechnologyFukayaJapan

Personalised recommendations