Effect of carbonized wood fiber loading on properties of ethylene vinyl acetate copolymers

  • M. P. M. HanifEmail author
  • A. R. Rozyanty
  • S. J. Tan
  • A. G. Supri
Original Paper


In this research, wood fiber waste type B was carbonized in stand steel tabulate and the whole system was kept in the furnace to undergo combustion process for 3 h at a temperature of 700 °C. The new promising filler is carbonized wood fiber (CWF). It was characterized using SEM–EDX to measure elemental composition. Based on the carbon content in CWF filler, it was proceeded in the melt-blending technique within EVA (semi-crystalline) using a Brabender plasticorder. The aim of this study was to investigate the effect of CWF loading on physical, mechanical, thermal and electrical performances of EVA composites. The statistical analysis indicates that there was no significant difference between theoretical and measured density, proven by p value of 0.2564. The void content increased dramatically up to 2% and remains a valid value for composite production. The mechanical properties dropped gradually with increasing CWF filler within EVA composites and similarly by mass swell percentages. The enhancement of conductivity in these composites was due to the attraction of CWF to EVA, promoting formation of conductive networks. The percolation threshold of CWF in the EVA matrix was determined at 10 phr of CWF loading. Thermal stability of composites increased with the increasing of CWF filler. Lastly, crystal orientation ratio and d-spacing reduced with the addition of CWF filler in EVA/CWF composites.



This work was supported financially by the School of Materials Engineering, Universiti Malaysia Perlis (UniMAP) and the Ministry of High Education Malaysia (MOHE) under Skim Latihan Tenaga Pengajar Akademik (SLTPA).


  1. 1.
    Nakano T, Nakaoki T (2011) Coagulation size of freezable water in poly (vinyl alcohol) hydrogels formed by different freeze/thaw cycle periods. Polym J 43(11):875CrossRefGoogle Scholar
  2. 2.
    Malkapuram R, Kumar V, Negi YS (2008) Recent development in natural fiber reinforced polypropylene composites. SAGE Publications, Thousand OaksGoogle Scholar
  3. 3.
    Chandrasekhar P (2013) Conducting polymers, fundamentals and applications: a practical approach. Springer, DordrechtGoogle Scholar
  4. 4.
    Lu J, Moon KS, Kim BK, Wong CP (2007) High dielectric constant polyaniline/epoxy composites via in situ polymerization for embedded capacitor applications. Polymer 48(6):1510–1516CrossRefGoogle Scholar
  5. 5.
    Ali I, Elleithy R, Al-Zahrani SM, Mohsin MA (2011) Viscoelastic, thermal, and morphological analysis of HDPE/EVA/CaCO3 ternary blends. Polym Bull 67(9):1961–1978CrossRefGoogle Scholar
  6. 6.
    Tlili R, Cecen V, Krupa I, Boudenne A, Ibos L, Candau Y, Novák I (2011) Mechanical and thermophysical properties of EVA copolymer filled with nickel particles. Polym Compos 32(5):727–736CrossRefGoogle Scholar
  7. 7.
    Benedek I (2004) Pressure-sensitive adhesives and applications. CRC Press, Boca RatonCrossRefGoogle Scholar
  8. 8.
    Czaniková K, Omastová M, Krupa I, Kasák P, Pavlová E, Chorvát D (2014) Elastomeric actuators based on ethylene-vinyl acetate and carbon nanotubes. In: Chemistry: the key to our sustainable future. Springer, Dordrecht, pp 1–14Google Scholar
  9. 9.
    Whelan A (2012) Polymer technology dictionary. Springer, DordrechtGoogle Scholar
  10. 10.
    Sefadi JS, Luyt AS (2015) Morphology and properties of EVA/empty fruit bunch composites, vol 25. SAGE Publications, Thousand Oaks, pp 895–914Google Scholar
  11. 11.
    La Mantia FP, Dintcheva NT (2006) Eva copolymer-based nanocomposites: Rheological behavior under shear and isothermal and non-isothermal elongational flow, vol 25. Elsevier, Amsterdam, pp 701–708Google Scholar
  12. 12.
    Liu H, Fang Z, Peng M, Shen L, Wang Y (2009) The effects of irradiation cross-linking on the thermal degradation and flame-retardant properties of the HDPE/EVA/magnesium hydroxide composites, vol 78. Elsevier, Amsterdam, pp 922–926Google Scholar
  13. 13.
    Zhang L, Li CZ, Zhou Q, Shao W (2007) Aluminum hydroxide filled ethylene vinyl acetate (EVA) composites: effect of the interfacial compatibilizer and the particle size, vol 42. Springer, Dordrecht, pp 4227–4232Google Scholar
  14. 14.
    Zhang W, Chen D, Zhao Q (2003) Effects of different kinds of clay and different vinyl acetate content on the morphology and properties of EVA/clay nanocomposites, vol 44. Elsevier, Amsterdam, pp 7953–7961Google Scholar
  15. 15.
    Almeida A, Brabant L, Siepmann F, De Beer T, Bouquet W, Van Hoorebeke L et al (2012) Sustained release from hot-melt extruded matrices based on ethylene vinyl acetate and polyethylene oxide, vol 82. Elsevier, Amsterdam, pp 526–533Google Scholar
  16. 16.
    Fatimah ARH, Aziz A, Hakem I, Supri AG (2014) Effect of PEgMAH on tensile properties and swelling behaviour of recycled high density polyethylene/ethylene vinyl acetate/waste tyre dust (r-HDPE/EVA/WTD) composites applied mechanics and materials, vol 554. Trans Tech Publ, Zurich, pp 137–140Google Scholar
  17. 17.
    Khonakdar HA, Jafari SH, Yavari A, Asadinezhad A, Wagenknecht U (2005) Rheology, morphology and estimation of interfacial tension of LDPE/EVA and HDPE/EVA blends, vol 54. Springer, Dordrecht, pp 75–84Google Scholar
  18. 18.
    Zhang Y, Hu Y, Song L, Wu J, Fang S (2008) Influence of Fe-MMT on the fire retarding behavior and mechanical property of (ethylene-vinyl acetate copolymer/magnesium hydroxide) composite, vol 19. Wiley Online Library, Hoboken, pp 960–966Google Scholar
  19. 19.
    Byrne C, Nagle D (1997) Carbonization of wood for advanced materials applications. Carbon 35(2):259–266CrossRefGoogle Scholar
  20. 20.
    Rosillo-Calle F, Woods J (2012) The biomass assessment handbook: bioenergy for a sustainable environment. Earthscan, LondonCrossRefGoogle Scholar
  21. 21.
    Mazlan M, Uemura Y, Osman N, Yusup S (2015) Characterizations of bio-char from fast pyrolysis of Meranti wood sawdust. Paper presented at the Journal of Physics: Conference SeriesGoogle Scholar
  22. 22.
    Allan J, Liu D, Taylor J, Flynn M, Williams P, Morgan W, Coe H, et al (2016, April) Online single particle measurements of black carbon coatings, structure and optical properties. In: EGU General Assembly Conference Abstracts, vol 18, p 16757Google Scholar
  23. 23.
    Mitchell P, Kiel J, Livingston B, Dupont-Roc G (2007) Torrefied biomass-a foresighting study into the business case for pellets from torrefied biomass as a new solid fuel. Energy 24:2007Google Scholar
  24. 24.
    Alig I, Potschke P, Lellinger D, Skipa T, Pegel S, Kasaliwal GR et al (2012) Establishment, morphology and properties of carbon nanotube networks in polymer melts. Polymer 53(1):4–28CrossRefGoogle Scholar
  25. 25.
    Bauhofer W, Kovacs JZ (2009) A review and analysis of electrical percolation in carbon nanotube polymer composites. Compos Sci Technol 69(10):1486–1498CrossRefGoogle Scholar
  26. 26.
    Winey KI, Kashiwagi T, Mu M (2007) Improving electrical conductivity and thermal properties of polymers by the addition of carbon nanotubes as fillers. MRS Bull 32(4):348–353CrossRefGoogle Scholar
  27. 27.
    Khalil HPSA, Firoozian P, Bakare IO, Akil HM, Noor AM (2010) Exploring biomass based carbon black as filler in epoxy composites: Flexural and thermal properties, vol 31. Elsevier, Amsterdam, pp 3419–3425Google Scholar
  28. 28.
    Dandekar MS, Arabale G, Vijayamohanan K (2005) Preparation and characterization of composite electrodes of coconut-shell-based activated carbon and hydrous ruthenium oxide for supercapacitors, vol 141. Elsevier, Amsterdam, pp 198–203Google Scholar
  29. 29.
    Varela Milla O, Rivera EB, Huang WJ, Chien C, Wang YM (2013) Agronomic properties and characterization of rice husk and wood biochars and their effect on the growth of water spinach in a field test, vol 13. SciELO Chile, pp 251–266Google Scholar
  30. 30.
    Asakura R, Morita M, Maruyama K, Hatori H, Yamada Y (2004) Preparation of fibrous activated carbons from wood fiber, vol 39. Springer, Dordrecht, pp 201–206Google Scholar
  31. 31.
    Ahmed K, Raza NZ, Habib F, Aijaz M, Afridi MH (2013) An investigation on the influence of filler loading and compatibilizer on the properties of polypropylene/marble sludge composites, vol 19. Elsevier, Amsterdam, pp 1805–1810Google Scholar
  32. 32.
    Vaxman A, Narkis M, Siegmann A, Kenig S (1989) Void formation in short-fiber thermoplastic composites. Polym Compos 10(6):449–453CrossRefGoogle Scholar
  33. 33.
    Jawaid M, Khalil HA, Bakar AA, Khanam PN (2011) Chemical resistance, void content and tensile properties of oil palm/jute fibre reinforced polymer hybrid composites. Mater Des 32(2):1014–1019CrossRefGoogle Scholar
  34. 34.
    Georgopoulos ST, Tarantili PA, Avgerinos E, Andreopoulos AG, Koukios EG (2005) Thermoplastic polymers reinforced with fibrous agricultural residues, vol 90. Elsevier, Amsterdam, pp 303–312Google Scholar
  35. 35.
    Aina K, Osuntuyi E, Aruwajoye A (2013) Comparative studies on physico-mechanical properties of wood plastic composites produced from three indigenous wood species. Int J Sci Res (IJSR) 2(8):226–230Google Scholar
  36. 36.
    Dikobe DG, Luyt AS (2007) Effect of filler content and size on the properties of ethylene vinyl acetate copolymer-wood fiber composites, vol 103. Wiley Online Library, Hoboken, pp 3645–3654Google Scholar
  37. 37.
    Kakou C, Arrakhiz F, Trokourey A, Bouhfid R, Qaiss A, Rodrigue D (2014) Influence of coupling agent content on the properties of high density polyethylene composites reinforced with oil palm fibers. Mater Des 63:641–649CrossRefGoogle Scholar
  38. 38.
    Ismail H, Rozman HD, Jaffri RM, Ishak ZAM (1997) Oil palm wood flour reinforced epoxidized natural rubber composites: the effect of filler content and size, vol 33. Elsevier, Amsterdam, pp 1627–1632Google Scholar
  39. 39.
    Sedlackova M, Lacik I, Chodak I (2001) Poly (ethylene-co-methacrylic acid) copolymer as an effective compatibilizer of LDPE/wood flour composite. Paper presented at the Macromolecular SymposiaGoogle Scholar
  40. 40.
    Balasuriya P, Ye L, Mai Y-W (2001) Mechanical properties of wood flake–polyethylene composites. Part I: effects of processing methods and matrix melt flow behaviour. Compos A Appl Sci Manuf 32(5):619–629CrossRefGoogle Scholar
  41. 41.
    Khanam PN, AlMaadeed M (2014) Improvement of ternary recycled polymer blend reinforced with date palm fibre. Mater Des 60:532–539CrossRefGoogle Scholar
  42. 42.
    Ho S, Supri AG, Teh PL (2014) Effect of polyethylene grafted maleic anhydride (PEgMAH) on tensile properties and swelling behavior of ethylene vinyl acetate (EVA)/natural rubber (NR)/feldspar composites. Paper presented at the applied mechanics and materialsGoogle Scholar
  43. 43.
    Ismail H, Nizam JM, Khalil HA (2001) The effect of a compatibilizer on the mechanical properties and mass swell of white rice husk ash filled natural rubber/linear low density polyethylene blends. Polym Test 20(2):125–133CrossRefGoogle Scholar
  44. 44.
    Alvarez J, Lopez G, Amutio M, Bilbao J, Olazar M (2014) Upgrading the rice husk char obtained by flash pyrolysis for the production of amorphous silica and high quality activated carbon. Biores Technol 170:132–137CrossRefGoogle Scholar
  45. 45.
    Lee EJ, Park ES (2015) Morphology, resistivity, and PTC behavior of EVOH/CB composites prepared by solvent-casting saponification and precipitation saponification. Polym Compos 38(7):1462–1473CrossRefGoogle Scholar
  46. 46.
    Danyadi L, Moczo J, Pukanszky B (2010) Effect of various surface modifications of wood flour on the properties of PP/wood composites, vol 41. Elsevier, Amsterdam, pp 199–206Google Scholar
  47. 47.
    Versino F, Garcaa MA (2014) Cassava (Manihot esculenta) starch films reinforced with natural fibrous filler, vol 58. Elsevier, Amsterdam, pp 305–314Google Scholar
  48. 48.
    Lu J, Qi R, Hu X, Luo Y, Jin J, Jiang P (2013) Preparation of soft wood-plastic composites, vol 130. Wiley Online Library, Hoboken, pp 39–46Google Scholar
  49. 49.
    Voronko Y, Eder GC, Knausz M, Oreski G, Koch T, Berger KA (2015) Correlation of the loss in photovoltaic module performance with the ageing behaviour of the backsheets used. Prog Photovolt Res Appl 23(11):1501–1515CrossRefGoogle Scholar
  50. 50.
    Barrueso-Martinez ML, del Pilar Ferrandiz-Gomez T, Romero-Sanchez MD, Martin-Martinez JM (2003) Characterization of EVA-based adhesives containing different amounts of rosin ester or polyterpene tackifier. J Adhes 79(8–9):805–824CrossRefGoogle Scholar
  51. 51.
    Jeevananda T, Siddaramaiah (2003) Synthesis and characterization of ethylene vinyl-acetate/polyaniline blends prepared by emulsion polymerization technique, vol 43. Hoboken, Wiley Online Library, pp 1138–1150Google Scholar
  52. 52.
    El-Tantawy F, Kamada K, Ohnabe H (2002) In situ network structure, electrical and thermal properties of conductive epoxy resin–carbon black composites for electrical heater applications. Mater Lett 56(1):112–126CrossRefGoogle Scholar
  53. 53.
    Akhlaghi S, Sharif A, Kalaee M, Elahi A, Pirzadeh M, Mazinani S et al (2012) Effect of stabilizer on the mechanical, morphological and thermal properties of compatibilized high density polyethylene/ethylene vinyl acetate copolymer/organoclay nanocomposites. Mater Des 33:273–283CrossRefGoogle Scholar
  54. 54.
    Jofre-Reche JA, Martin-Martinez JM (2013) Selective surface modification of ethylene-vinyl acetate and ethylene polymer blend by UV–ozone treatment. Int J Adhes Adhes 43:42–53CrossRefGoogle Scholar
  55. 55.
    Bridgwater AV (2012) Review of fast pyrolysis of biomass and product upgrading. Biomass Bioenerg 38:68–94CrossRefGoogle Scholar
  56. 56.
    Qi B, Lu S, Xiao X, Pan L, Tan F, Yu J (2014) Enhanced thermal and mechanical properties of epoxy composites by mixing thermotropic liquid crystalline epoxy grafted graphene oxide. Express Polym Lett 8(7):467–479CrossRefGoogle Scholar
  57. 57.
    Lei Y, Wu Q, Yao F, Xu Y (2007) Preparation and properties of recycled HDPE/natural fiber composites. Compos A Appl Sci Manuf 38(7):1664–1674CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  1. 1.School of Materials EngineeringUniversiti Malaysia Perlis (UniMAP)ArauMalaysia
  2. 2.Center of Excellence Geopolymer and Green Technology, School of Materials EngineeringUniversiti Malaysia Perlis (UniMAP)ArauMalaysia
  3. 3.Faculty of Engineering TechnologyUniversiti Malaysia Perlis (UniMAP)Padang BesarMalaysia

Personalised recommendations