Thermal degradation and crystallization kinetics studies on synthesized calcium mercaptosuccinate end-capped poly(ε-caprolactone) nanocomposite

  • S. Mahalakshmi
  • T. Alagesan
  • V. ParthasarathyEmail author
  • R. Anbarasan
Original Paper


The calcium mercaptosuccinate (Ca-MS) functionalized poly(ε-caprolactone) (PCL) was successfully synthesized by ring-opening polymerization (ROP) method at 160 °C for 2 h under nitrogen atmosphere with mild stirring in the presence of stannous octoate (SO) as ROP catalyst. The synthesized Ca-MS functionalized PCL was characterized by FTIR spectroscopy, NMR spectroscopy, atomic force microscopy, HRTEM and polarized optical microscopy (POM) like analytical techniques. The microstructure of Ca-MS nucleated PCL crystals was analysed by POM. The thermal properties of Ca-MS functionalized PCL were examined using differential scanning calorimetry and thermogravimetric analysis techniques. The non-isothermal crystallization and degradation kinetic studies were carried out to assess the crystallinity as well as the energy of activation (Ea) of Ca-MS functionalized PCL. The FTIR spectrum showed a peak at 1720 cm−1 corresponding to the carbonyl stretching of PCL. The 1H-NMR spectrum showed an alkoxy proton signal at 4.1 ppm. The non-isothermal crystallization kinetic study showed the 3D crystal growth with the Ea value of 142.4 kJ/mol.


Activation energy Degradation Spherulite Crystallization Kinetics 


  1. 1.
    Sung GA, Chang GC (2004) Synthesis and characterization of amphiphilic poly(caprolactone) star block copolymers. Macromol Rapid Commun 25:618–622CrossRefGoogle Scholar
  2. 2.
    Vroman I, Tighzert L (2009) Bio-degradable polymers. Materials 2:307–344CrossRefPubMedCentralGoogle Scholar
  3. 3.
    Ayala GG, Pace ED, Laurienzo P, Pantalena D, Somma E, Nobila MR (2009) Poly(ε-caprolactone) modified by functional groups: preparation and chemical-physical investigation. Eur Polym J 45:3217–3229CrossRefGoogle Scholar
  4. 4.
    Ludueña LN, Alvarez VA, Vazquez A (2007) Processing and microstructure of PCL/clay nanocomposites. Mater Sci Eng A 461:121–129CrossRefGoogle Scholar
  5. 5.
    Liao L, Zhang C, Gong S (2007) Preparation of poly(ε-caprolactone)/clay nanocomposites by microwave assisted in situ ring opening polymerization. Macromol Rapid Commun 28:1148–1154CrossRefGoogle Scholar
  6. 6.
    Bryan GO, Wong BM, Mcelhanon JR (2010) Stress sensing in polycaprolactone films via an embedded photochromic compound. Appl Mater Interfaces 2:1594–1600CrossRefGoogle Scholar
  7. 7.
    Sivabalan A, Meenarathi B, Palanikumar S, Anbarasan R (2014) Synthesis and characterization of poly(caprolactone): a comparative study. Int J Sci Res Eng Tech 1:9–14Google Scholar
  8. 8.
    Gosur M, Yilmaz F, Kilic A, Demirei A, Kosemen A, San SE (2010) Synthesis, characterization, electrochromic properties, and electrochromic device application of a novel star polymer consisting of thiophene end-capped poly(ε-caprolactone) arms emanating from a hexafunctional cyclotriphosphazene core. J Polym Sci A Polym Chem 48:3668–3682CrossRefGoogle Scholar
  9. 9.
    Meenarathi B, Siva P, Palanikumar S, Kannammal L, Anbarasan R (2016) Synthesis, characterization and drug release activity of poly(caprolactone)/Fe3O4 nanocomposites. Nanocomposites 2:98–107CrossRefGoogle Scholar
  10. 10.
    Pappalardo D, Ahnumziata L, Pellecchia C (2009) Synthesis and spectroscopic studies of macrocyclic polystyrene containing two fluorene units and single 9,10-anthracenylidene group. Macromolecules 42:6015–6062CrossRefGoogle Scholar
  11. 11.
    Sivabalan B, Meenarathi S, Palanikumar R (2014) Synthesis, characterization, application and band gap study of calcium mercaptosuccinate. J Sci Res Eng Tech 1:9–14Google Scholar
  12. 12.
    Jiang L, Lou W, Sun L, Xu Z (2005) Ring opening polymerization of caprolactone with a divalent samarium bis(phosphido) complex. J Appl Polym Sci 98:1558–1564CrossRefGoogle Scholar
  13. 13.
    Chen HH, Anbarasan R, Kuo LS, Chen PH (2011) A novel report on Eosin Y functionalized MWCNT as an initiator for the ring opening polymerization of ε-caprolactone. Mater Chem Phys 126:584–590CrossRefGoogle Scholar
  14. 14.
    Contreras JM, Medina D, López-Carrasquero F, Contreras RR (2013) Ring opening polymerization of ε-caprolactone initiated by samarium acetate. J Polym Res 20:244–249CrossRefGoogle Scholar
  15. 15.
    Monelave M, Contreras JM, Laredo E, Carrasquero FL (2010) Ring opening polymerization of (R, S)-β-butyrolactone and caprolactone using sodium hydride as initiator. Exp Polym Lett 7:431–441Google Scholar
  16. 16.
    Persenaire O, Alexandre M, Degée P, Dubois P (2001) Mechanisms and kinetics of thermal degradation of poly(ε-caprolactone). Biomacromolecules 2:288–294CrossRefGoogle Scholar
  17. 17.
    Annette C, Renouf G, John R, David FF, Ruth EC (2005) The effect of crystallinity on the deformation mechanism and bulk mechanical properties of PLLA. Biomaterials 26:5771–5782CrossRefGoogle Scholar
  18. 18.
    Tsuji H, Ikada Y (1995) Synthesis and spectroscopic studies of macrocyclic polystyrene containing two fluorene units and single 9,10-anthracenylidene group. Polymer 6:2709–2716CrossRefGoogle Scholar
  19. 19.
    Yaming W, Rodriguez-Perez A, Reis L, Mano F (2005) Thermal and thermomechanical behaviour of poly(caprolactone) and poly(caprolactone)/starch blends for biomedical applications. Macromol Mater Eng 290:792–801CrossRefGoogle Scholar
  20. 20.
    Stavroula G, George Z, Papageorgiou DN (2012) Crystallization of novel poly(ε-caprolactone)-block-poly(propyleneadipate) copolymers. J Therm Anal Calorim 108:633–645CrossRefGoogle Scholar
  21. 21.
    Achla S, Miti N, Joesmon J (2017) Non-isothermal crystallization and microstructural behaviour of poly(ε-caprolactone) and granular tapioca starch-based biocomposite. Int J Polym Anal Charact 22:222–236CrossRefGoogle Scholar
  22. 22.
    Vackova T, Ostafinska A, Kova SK, Nevoralova M, Slouf M (2017) Impact of particle morphology on structure, crystallization kinetics, and properties of PCL composites with TiO2 based particles. Polym Bull 74:445–464CrossRefGoogle Scholar
  23. 23.
    Nanaki SN, Papageorgion GZ, Bikiaris DN (2012) Crystallization of novel poly(caprolactone-block-propyladipate) copolymers. J Therm Anal Calorim 108:633–645CrossRefGoogle Scholar
  24. 24.
    Su TT, Jiang H, Gong H (2008) Thermal stabilities and the thermal degradation kinetics of poly(ε-caprolactone). Polym Plast Technol Eng 47:398–403CrossRefGoogle Scholar
  25. 25.
    Wang XL, Huang FY, Zhou Y, Wang YZ (2009) Non-isothermal crystallization kinetics of poly(ε-caprolactone)/montmorillonite nanocomposites. J Macromol Sci Part B Phys 48:710–722CrossRefGoogle Scholar
  26. 26.
    Chrissafis K, Antoniadis G, Paraskevopoulos KM, Vassiliou A, Bikiaris DN (2007) Comparative study of the effect of different nanoparticles on the mechanical properties and thermal degradation mechanism of in situ prepared poly(e-caprolactone) nanocomposites. Compos Sci Technol 67:2165–2174CrossRefGoogle Scholar
  27. 27.
    Vyazovkin S, Sbirrazzuoli N (2003) Estimating the activation energy for non-isothermal crystallization of polymer melts. J Therm Anal Calorim 72:681–686CrossRefGoogle Scholar
  28. 28.
    Vyazovkin S, Burnham AK, Criado JM, Perez-Maqueda LA, Popescu C, Sbirrazzuoli N (2011) ICTAC Kinetics Committee recommendations for performing kinetic computations on thermal analysis data. Thermochim Acta 520:1–19CrossRefGoogle Scholar
  29. 29.
    Demir P (2017) Investigation of thermal degradation kinetics of poly(ε-caprolactone) grafted onto PEMA-co-PHEMA. J Sci Eng 17:73–85Google Scholar
  30. 30.
    Chrissafis K (2009) Kinetics of thermal degradation of polymers: complementary use of isoconversional and model-fitting methods. J Therm Anal Calorim 95:273–283CrossRefGoogle Scholar
  31. 31.
    Meenarathi B, Siva P, Palanikumar S, Kannammal L, Anbarasan R (2016) Synthesis, characterization and drug release activity of poly(ε-caprolactone)/Fe3O4–alizarinred nanocomposites. Nanocomposites 2:98–107CrossRefGoogle Scholar
  32. 32.
    Wang L, Sheng J (2014) Non-isothermal crystallization kinetics of polypropylene/attapulgite nanocomposites. J Macromol Sci B Phys 44:31–42CrossRefGoogle Scholar
  33. 33.
    Ma J, Zhang S, Qi Z, Li G, Hu Y (2002) Viscoelastic properties of young and old human dermis: a proposed molecular mechanism for elastic energy storage in collagen and elastin. J Appl Polym Sci 83:1978–1985CrossRefGoogle Scholar
  34. 34.
    Kawazu K, Nakagawa S, Ishizone T, Nojima S, Arai D, Yamaguchi K, Nakahama S (2017) Effects of bulky end groups on the crystallization kinetics of poly(ε-caprolactone) homopolymers confined in a cylindrical nanodomain. Macromolecules 50:7202–7210CrossRefGoogle Scholar
  35. 35.
    Wu TM, Chen EC (2006) Isothermal and non-isothermal crystallization kinetics of poly(ε-caprolactone)/multi-walled carbon nanotube composites. Polym Eng Sci 46:1309–1317CrossRefGoogle Scholar
  36. 36.
    Jancirani A, Kohila V, Meenarathi B, Yellilarasi A, Anbarasan R (2016) Synthesis, characterization and non-isothermal degradation kinetics of novel poly(mono ethylene glycol dimethacrylate-co-4-aminobenzoate). Bull Mater Sci 39:1725–1733CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  • S. Mahalakshmi
    • 1
  • T. Alagesan
    • 2
  • V. Parthasarathy
    • 3
    Email author
  • R. Anbarasan
    • 4
  1. 1.Department of PhysicsAnand Institute of Higher TechnologyKazhipattur, ChennaiIndia
  2. 2.Department of PhysicsPresidency CollegeChennaiIndia
  3. 3.Department of PhysicsHindustan Institute of Technology and SciencePadur, ChennaiIndia
  4. 4.Department of Chemical EngineeringNational Taiwan UniversityTaipeiTaiwan

Personalised recommendations