Efficient polymeric phosphorus flame retardant: flame retardancy, thermal property, and physical property on polylactide

  • Min-Ji Sim
  • Sang-Ho ChaEmail author
Original Paper


A novel polymeric flame retardant, PBPP2, for polylactide (PLA) was synthesized via a two-step polymerization process. The flame retardancy of neat PLA and flame-retarded PLA films prepared via solution casting method with different PBPP2 ratios was then investigated. When only the 3 wt% PBPP2 was added to PLA, the limiting oxygen index was increased from 23 to 30%. Additionally, the required V-0 rating was achieved compared to neat PLA. It was also found that PBPP2 increases the maximum thermal decomposition temperature of PLA, indicating that 3 wt% of PBPP2 is sufficient to improve flame retardancy and thermal stability on PLA, simultaneously. From both the decrease in Tm and the increase in elongation for PLA with the 3 wt% addition of PBPP2, PBPP2 could be considered to also function as a plasticizer on PLA.


Phosphorus Polymeric flame retardant Polylactide Flame retardancy Thermal stability Processability 



This work was supported by Kyonggi University Research Grant 2016.

Supplementary material

289_2018_2558_MOESM1_ESM.docx (718 kb)
Supplementary material 1 (DOCX 718 kb)


  1. 1.
    Álvarez-Chávez CR, Edwards S, Moure-Eraso R, Geiser K (2012) Sustainability of bio-based plastics: general comparative analysis and recommendations for improvement. J Clean Prod 23:47–56CrossRefGoogle Scholar
  2. 2.
    Arikan EB, Ozsoy HD (2015) A review: investigation of bioplastics. J Civ Eng Archit 9:188–192Google Scholar
  3. 3.
    Siracusa V, Rocculi P, Romani S, Rosa MD (2008) Biodegradable polymers for food packaging: a review. Trends Food Sci Technol 19:634–643CrossRefGoogle Scholar
  4. 4.
    Kale G, Kijchavengkul T, Auras R, Rubino M, Selke SE, Singh SP (2007) Compostability of bioplastic packaging materials: an overview. Macromol Biosci 7:255–277CrossRefGoogle Scholar
  5. 5.
    Nampoothiri KM, Nair NR, John RP (2010) An overview of the recent developments in polylactide (PLA) research. Bioresour Technol 101:8493–8501CrossRefGoogle Scholar
  6. 6.
    Llorens E, del Valle LJ, Puiggali J (2015) Electrospun scaffolds of polylactide with a different enantiomeric content and loaded with anti-inflammatory and antibacterial drugs. Macromol Res 23:636–648CrossRefGoogle Scholar
  7. 7.
    Garlotta DJ (2001) A literature review of poly (lactic acid). Polym Environ 9(2):63–84CrossRefGoogle Scholar
  8. 8.
    Cheng KC, Chang SC, Lin YH, Wang CC (2015) Mechanical and flame retardant properties of polylactide composites with hyperbranched polymers. Compos Sci Technol 118:186–192CrossRefGoogle Scholar
  9. 9.
    Auras R, Harte B, Selke S (2004) An overview of polylactides as packaging materials. Macromol Biosci 4:835–864CrossRefGoogle Scholar
  10. 10.
    Shirali H, Rafizadeh M, Taromi FA (2015) Effect of incorporating bis(2-hydroxyethyl) terephthalate on thermal and mechanical properties and degradability of poly(butylene succinate). Macromol Res 23:755–764CrossRefGoogle Scholar
  11. 11.
    Song YP, Wang DY, Wang XL, Lin L, Wang YZ (2011) A method for simultaneously improving the flame retardancy and toughness of PLA. Polym Adv Technol 22:2295–2301CrossRefGoogle Scholar
  12. 12.
    Shah AA, Hasan F, Hameed A, Ahmed S (2008) Biological degradation of plastics: a comprehensive review. Biotechnol Adv 26:246–265CrossRefGoogle Scholar
  13. 13.
    Shukor F, Hassan A, Islam MS, Mokhtar M, Hassan M (2014) Effect of ammonium polyphosphate on flame retardancy, thermal stability and mechanical properties of alkali treated kenaf fiber filled PLA biocomposites. Mater Des 54:425–429CrossRefGoogle Scholar
  14. 14.
    Huang LP, Jin B, Lant P, Zhou J (2005) Simultaneous saccharification and fermentation of potato starch wastewater to lactic acid by Rhizopus oryzae and Rhizopus arrhizus. Biochem Eng J 23:265–276CrossRefGoogle Scholar
  15. 15.
    Lee HY, Cha SH (2017) Enhancement of self-healing property by introducing ethylene glycol group into thermally reversible Diels–Alder reaction based self-healable materials. Macromol Res 25:640–647CrossRefGoogle Scholar
  16. 16.
    Cheng KC, Lin YH, Guo W, Chuang TH, Chang SC, Wang SF, Don TM (2015) Flammability and tensile properties of polylactide nanocomposites with short carbon fibers. J Mater Sci 50:1605–1612CrossRefGoogle Scholar
  17. 17.
    Nishida H, Fan Y, Mori T, Oyagi N, Shirai Y, Endo T (2005) Feedstock recycling of flame-resisting poly (lactic acid)/aluminum hydroxide composite to L, L-lactide. Ind Eng Chem Res 44:1433–1437CrossRefGoogle Scholar
  18. 18.
    Wei LL, Wang DY, Chen HB, Chen L, Wang XL, Wang YZ (2011) Effect of a phosphorus-containing flame retardant on the thermal properties and ease of ignition of poly (lactic acid). Polym Degrad Stab 96:1557–1561CrossRefGoogle Scholar
  19. 19.
    Costes L, Laoutid F, Khelifa F, Rose G, Brohez S, Delvosalle C, Dubois P (2016) Cellulose/phosphorus combinations for sustainable fire retarded polylactide. Eur Polym J 74:218–228CrossRefGoogle Scholar
  20. 20.
    Cheng XW, Guan JP, Tang RC, Liu KQ (2016) Improvement of flame retardancy of poly(lactic acid) nonwoven fabric with a phosphorus-containing flame retardant. J Ind Text 46:914–928CrossRefGoogle Scholar
  21. 21.
    Cheng XW, Guan JP, Tang RC, Liu KQ (2016) Phytic acid as a bio-based phosphorus flame retardant for poly(lactic acid) nonwoven fabric. J Clean Prod 124:114–119CrossRefGoogle Scholar
  22. 22.
    Hoang D, Kim J (2008) Synthesis and applications of biscyclic phosphorus flame retardants. Polym Degrad Stab 93:36–42CrossRefGoogle Scholar
  23. 23.
    Lu SY, Hamerton I (2002) Recent developments in the chemistry of halogen-free flame retardant polymers. Prog Polym Sci 27:1661–1712CrossRefGoogle Scholar
  24. 24.
    Levchik SV, Weil ED (2006) A review of recent progress in phosphorus-based flame retardants. J Fire Sci 24:345–364CrossRefGoogle Scholar
  25. 25.
    Veen IVD, Boer JD (2012) Phosphorus flame retardants: properties, production, environmental occurrence, toxicity and analysis. Chemosphere 88:1119–1153CrossRefGoogle Scholar
  26. 26.
    Liao F, Zhou L, Ju Y, Yang Y, Wang X (2014) Synthesis of a novel phosphorus–nitrogen–silicon polymeric flame retardant and its application in poly (lactic acid). Ind Eng Chem Res 53:10015–10023CrossRefGoogle Scholar
  27. 27.
    Zhang R, Xiao X, Tai Q, Huang H, Hu Y (2012) Modification of lignin and its application as char agent in intumescent flame-retardant poly (lactic acid). Polym Eng Sci 52:2620–2626CrossRefGoogle Scholar
  28. 28.
    Zhang R, Xiao X, Tai Q, Huang H, Yang J, Hu Y (2012) Preparation of lignin–silica hybrids and its application in intumescent flame-retardant poly(lactic acid) system. High Perform Polym 24:738–746CrossRefGoogle Scholar
  29. 29.
    Lim KS, Bee ST, Sin LT, Tee TT, Ratnam CT, Hui D, Rahmat AR (2016) A review of application of ammonium polyphosphate as intumescent flame retardant in thermoplastic composites. Compos Part B 84:155–174CrossRefGoogle Scholar
  30. 30.
    Li S, Yuan H, Yu T, Yuan W, Ren J (2009) Flame-retardancy and anti-dripping effects of intumescent flame retardant incorporating montmorillonite on poly (lactic acid). Polym Adv Technol 20:1114–1120CrossRefGoogle Scholar
  31. 31.
    Wang X, Li Y, Liao W, Gu J, Li D (2008) A new intumescent flame-retardant: preparation, surface modification, and its application in polypropylene. Polym Adv Technol 19:1055–1061CrossRefGoogle Scholar
  32. 32.
    Réti C, Casetta M, Duquesne S, Bourbigot S, Delobel R (2008) Flammability properties of intumescent PLA including starch and lignin. Polym Adv Technol 19:628–635CrossRefGoogle Scholar
  33. 33.
    Zhan J, Song L, Nie S, Hu Y (2009) Combustion properties and thermal degradation behavior of polylactide with an effective intumescent flame retardant. Polym Degrad Stab 94:291–296CrossRefGoogle Scholar
  34. 34.
    Kiuchi Y, Lji M, Yanagisawa T, Shukichi T (2014) Flame-retarding polylactic-acid composite formed by dual use of aluminum hydroxide and phenol resin. Polym Degrad Stab 109:336–342CrossRefGoogle Scholar
  35. 35.
    Shin BS, Jung ST, Jeun JP, Kim HB, Oh SH, Kang PH (2012) A study on flammability and mechanical properties of HDPE/EPDM/boron carbide/triphenyl phosphate blends with compatibilizer. Polym Korea 36:549–554CrossRefGoogle Scholar
  36. 36.
    Hu X, Guo Y, Chen L, Wang X, Li L, Wang Y (2012) A novel polymeric intumescent flame retardant: synthesis, thermal degradation mechanism and application in ABS copolymer. Polym Degrad Stab 97:1772–1778CrossRefGoogle Scholar
  37. 37.
    Liu W, Chen DQ, Wang YZ, Wang DY, Qu MH (2007) Char-forming mechanism of a novel polymeric flame retardant with char agent. Polym Degrad Stab 92:1046–1052CrossRefGoogle Scholar
  38. 38.
    Gordon SH, Cao X, Mohamed A, Willett JL (2005) Infrared spectroscopy method reveals hydrogen bonding and intermolecular interaction between components in polymer blends. J Appl Polym Sci 97:813–821CrossRefGoogle Scholar
  39. 39.
    Du L, Qu B, Xu Z (2006) Flammability characteristics and synergistic effect of hydrotalcite with microencapsulated red phosphorus in halogen-free flame retardant EVA composite. Polym Degrad Stab 91:995–1001CrossRefGoogle Scholar
  40. 40.
    Lin HJ, Liu SR, Han LJ, Wang XM, Bian YJ, Dong LS (2013) Effect of a phosphorus-containing oligomer on flame-retardant, rheological and mechanical properties of poly (lactic acid). Polym Degrad Stab 98:1389–1396CrossRefGoogle Scholar
  41. 41.
    Cullis CF, Hirschler MM (1984) Char formation from polyolefins. Correlations with low-temperature oxygen uptake and with flammability in the presence of metal halogen systems. Eur Polym J 20:53–60CrossRefGoogle Scholar
  42. 42.
    Liao F, Ju Y, Dai X, Cao Y, Li J, Wang X (2015) A novel efficient polymeric flame retardant for poly (lactic acid)(PLA): synthesis and its effects on flame retardancy and crystallization of PLA. Polym Degrad Stab 120:251–261CrossRefGoogle Scholar
  43. 43.
    Morgan AB, Harris RH Jr, Kashiwagi T, Chyall LJ, Gilman JW (2002) Flammability of polystyrene layered silicate (clay) nanocomposites: carbonaceous char formation. Fire Mater 26:247–253CrossRefGoogle Scholar
  44. 44.
    Kashiwagi T, Shields JR, Harris RH Jr, Davis RD (2003) Flame-retardant mechanism of silica: effects of resin molecular weight. J Appl Polym Sci 87:1541–1553CrossRefGoogle Scholar
  45. 45.
    Yuan Y, Yang H, Yu B, Shi Y, Wang W, Song L, Hu Y, Zhang Y (2016) Phosphorus and nitrogen-containing polyols: synergistic effect on the thermal property and flame retardancy of rigid polyurethane foam composites. Ind Eng Chem Res 55:10813–10822CrossRefGoogle Scholar
  46. 46.
    Wu D, Wu L, Zhang M, Zhao Y (2008) Viscoelasticity and thermal stability of polylactide composites with various functionalized carbon nanotubes. Polym Degrad Stab 93:1577–1584CrossRefGoogle Scholar
  47. 47.
    Bugajny M, Bourbigot S, Bras ML, Delobel R (1999) The origin and nature of flame retardance in ethylene-vinyl acetate copolymers containing hostaflam AP 750. Polym Int 48:264–270CrossRefGoogle Scholar
  48. 48.
    Song L, Xuan S, Wang X, Hu Y (2012) Flame retardancy and thermal degradation behaviors of phosphate in combination with POSS in polylactide composites. Thermochim Acta 527:1–7CrossRefGoogle Scholar
  49. 49.
    Levchik SV, Weil ED (2005) Flame retardancy of thermoplastic polyesters—a review of the recent literature. Polym Int 54:11–35CrossRefGoogle Scholar
  50. 50.
    Lin H, Han L, Dong L (2014) Thermal degradation behavior and gas phase flame-retardant mechanism of polylactide/PCPP blends. J Appl Polym Sci 131:40480CrossRefGoogle Scholar
  51. 51.
    Maiza M, Benaniba MT, Quintard G, Massardier-Nageotte V (2015) Biobased additive plasticizing polylactic acid (PLA). Polimeros 25:581–590Google Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Department of Chemical EngineeringKyonggi UniversitySuwonRepublic of Korea

Personalised recommendations