Advertisement

SEMI-empirical PM6 method applied in the analysis of thermodynamics properties and molecular orbitals at different temperatures of adsorption drugs on chitosan hydrogels for type 2 diabetes

  • Nancy Liliana Delgadillo Armendariz
  • Norma Aurea Rangel Vázquez
  • Edgar Marquez Brazon
Original Paper
  • 7 Downloads

Abstract

In this work, the computation modeling was used by the semi-empirical PM6 method that allowed to analyze the effect of temperature (308.15, 310.15 and 313.15 K, respectively) on the adsorption of metformin, glibenclamide as well as the glibenclamide/metformin complex on chitosan hydrogels crosslinked with genipin in which it was appreciated that the Gibbs free energy remained thermodynamically stable at an average of 99.857–100.215%, the dipole moments indicated differences in electronegativities that were verified by the electrostatic potential maps (MESP) where the nucleophilic and electrophilic zones were appreciated at different temperatures in the CH, NH, CO and OH bonds, respectively. On the other hand, the negative partition coefficient indicated that the solubility of the complex on the hydrogel chains is carried out even with changes in temperature. Also, the presence of deprotonation generated an increase in hydrogel swelling. Finally, the difference between the highest occupied molecular orbital and the lowest unoccupied molecular orbital orbitals indicated the presence of a molecular flow in the valence and conduction bands during the adsorption of complex, then these results indicate that is possibly designing a drug delivery system.

Graphical abstract

Keywords

Glibenclamide Metformin Chitosan Hydrogel PM6 method 

References

  1. 1.
    Yadav N, Morris G, Harding SE, Ang S, Adams GG (2009) Various non-injectable delivery systems for the treatment of diabetes mellitus. Endocr Metab Immune Disord Drug Targ 9:1–13CrossRefGoogle Scholar
  2. 2.
    Rai VK, Mishra N, Agrawal AK, Jain S, Yadav NP (2016) Novel drug delivery system: an immense hope for diabetics. Drug Deliv 23:2371–2390CrossRefPubMedGoogle Scholar
  3. 3.
    Abu-Farh M, Abubaker J, Tuomilehto J (2017) ANGPTL8 (betatrophin) role in diabetes and metabolic diseases. Diabetes Metab Res Rev.  https://doi.org/10.1002/dmrr.2919 CrossRefGoogle Scholar
  4. 4.
    Chen Y, Luan J, Shen W, Lei K, Yu L, Ding J (2016) Injectable and thermosensitive hydrogel containing liraglutide as a long-acting antidiabetic system. ACS Appl Mater Interfaces 8:30703–30713CrossRefPubMedGoogle Scholar
  5. 5.
    Kim A, Mujumdar SK, Siegel RA (2014) Swelling properties of hydrogels containing phenylboronic acids. Chemosensors 2:1–12CrossRefGoogle Scholar
  6. 6.
    Prausnitz MR, Langer R (2008) Transdermal drug delivery. Nat Biotechnol 26:1261–1268CrossRefPubMedPubMedCentralGoogle Scholar
  7. 7.
    Upadhyay G, Verma S, Parvez N, Sharma PK (2014) Recent trends in transdermal drug delivery system—a review. Adv Biol Res 8:131–138Google Scholar
  8. 8.
    Hafeez A, Jain U, Singh J, Maurya A, Rana L (2013) Recent advances in transdermal drug delivery system (TDDS): an overview. J Sci Innov Res 2:733–744Google Scholar
  9. 9.
    Subedi RK, Oh SY, Chun MK, Choi HK (2010) Recent advances on transdermal drug delivery. Arch Pharm Res 33:339–351CrossRefPubMedGoogle Scholar
  10. 10.
    Alkilani AZ, McCrudden MTC, Donnelly RF (2015) Transdermal drug delivery: innovative pharmaceutical developments based on disruption of the barrier properties of the stratum corneum. Pharmaceutics 7:438–470CrossRefPubMedGoogle Scholar
  11. 11.
    Salamanca-Buentello F (2005) Nanotechnology and the developing world. PLoS Med.  https://doi.org/10.1371/journal.pmed.0020097 CrossRefPubMedPubMedCentralGoogle Scholar
  12. 12.
    Edlich A, Gerecke C, Giulbudaguan M, Neumann F, Hedtrich S, Schafer-Korting M, Ma N, Calderon M, Kleuser B (2017) Specific uptake mechanics of well-tolerated thermoresponsive polyglycerol-based nanogels in antigen-presenting cells of the skin. Eur J Pharm Biopharm 116:155–163CrossRefPubMedGoogle Scholar
  13. 13.
    Sultana F, Imran-Ul-Haque M, Arafat M, Sharmin S (2013) An overview of nanogel drug delivery system. J Appl Pharm Sci 3:S95–S105Google Scholar
  14. 14.
    Nur M, Vasiljevic T (2017) Can natural polymers assist in delivering insulin orally? Int J Biol Macromol 103:889–901CrossRefPubMedGoogle Scholar
  15. 15.
    Kadajji VG, Betageri GV (2011) Water soluble polymers for pharmaceutical applications. Polymers 3:1972–2009CrossRefGoogle Scholar
  16. 16.
    Anwunob AP, Emeje MO (2011) Recent applications of natural polymers in nanodrug delivery. J Nanomed Nanotechnol.  https://doi.org/10.4172/2157-7439.S4-002 CrossRefGoogle Scholar
  17. 17.
    Bernkop-Schnürch A, Dünnhaupt S (2012) Chitosan-based drug delivery systems. Eur J Pharm Biopharm 81:463–469CrossRefPubMedGoogle Scholar
  18. 18.
    Ways MM, Lau MW, Khutoryanskiy VV (2018) Chitosan and its derivatives for application in mucoadhesive drug delivery systems. Polymers 10:267–304CrossRefGoogle Scholar
  19. 19.
    Morris GA, Kök SM, Harding SE, Adams GG (2010) Polysaccharide drug delivery systems based on pectin and chitosan. Biotechnol Genet Eng Rev 27:257–284CrossRefPubMedGoogle Scholar
  20. 20.
    Najafi S, Pazhouhnia Z, Ahmadi O, Berenjian A, Jafarizadeh-Malmiri H (2014) Chitosan nanoparticles and their applications in drug delivery: a review. Curr Res Drug Discov 1:17–25CrossRefGoogle Scholar
  21. 21.
    Ahmadi F, Oveisi Z, Mohammadi-Samani S, Amoozgar Z (2015) Chitosan based hydrogels: characteristics and pharmaceutical applications. Res Pharm Sci 10:1–16CrossRefPubMedPubMedCentralGoogle Scholar
  22. 22.
    Barrios-Vázquez SC, Villafuerte-Robles L (2013) Functionality of GalenIQ 721 as excipient for direct compression tablets. J Appl Pharm Sci 3:08–19Google Scholar
  23. 23.
    Karande P, Mitragotri S (2009) Enhancement of transdermal drug delivery via synergistic action of chemicals. BBA Biomembr 1788:2362–2373CrossRefGoogle Scholar
  24. 24.
    Li CW, Yang SY, He R, Tao WJ, Yin ZN (2011) Development of quantitative structure-property relationship models for self-emulsifying drug delivery system of 2-aryl propionic acid NSAIDs. J Nanomat.  https://doi.org/10.1155/2011/206320 CrossRefGoogle Scholar
  25. 25.
    Sáez V, Hernáez E, López L (2003) Liberación controlada de fármacos. Aplicaciones biomédicas. Rev Iberoamer Polím 4:111–122Google Scholar
  26. 26.
    Varbanov HP, Jakupec MA, Roller A, Jensen F, Galanski M, Kepplert BK (2013) Theoretical investigations and density functional theory based quantitative structure-activity relationships model for novel cytotoxic platinum(IV) complexes. J Med Chem 56:330–344CrossRefPubMedGoogle Scholar
  27. 27.
    Haddish-Berhane N, Rickus JL, Haghighi K (2007) The role of multiscale computational approaches for rational design of conventional and nanoparticle oral drug delivery systems. Int J Nanomed 2:315–331Google Scholar
  28. 28.
    Kromann JC, Christensen AS, Steinmann C, Korth M, Jensen JH (2014) A third-generation dispersion and third-generation hydrogen bonding corrected PM6 method: PM6-D3H+. Biochem Biophys Mol Biol.  https://doi.org/10.7717/peerj.449 CrossRefGoogle Scholar
  29. 29.
    Kumar-Giri T, Thakur A, Alexander A, Ajazuddin BH, Tripathi DK (2012) Modified chitosan hydrogels as drug delivery and tissue engineering systems: present status and applications. Acta Pharm Sin.  https://doi.org/10.1016/j.apsb.2012.07.004 CrossRefGoogle Scholar
  30. 30.
    Bhattarai N, Gunn J, Zhang M (2010) Chitosan-based hydrogels for controlled, localized drug delivery. Adv Drug Deliv Rev.  https://doi.org/10.1016/j.addr.2009.07.019 CrossRefPubMedGoogle Scholar
  31. 31.
    Janaki C, Sailatha E, Gunasekaran S, Ram-Kumaar GR (2016) Molecular structure and spectroscopic characterization of metformin with experimental techniques and DFT quantum chemical calculations. Int J Technochem Res 2:91–104Google Scholar
  32. 32.
    Rincón-Silva NG, Moreno-Piraján JC, Giraldo-Giraldo L (2015) Thermodynamic study of adsorption of phenol, 4-chlorophenol, and 4-nitrophenol on activated carbon obtained from eucalyptus seed. J Chem.  https://doi.org/10.1155/2015/569403 CrossRefGoogle Scholar
  33. 33.
    Singh A, Ebenso EE, Quraishi MA (2012) Theoretical and electrochemical studies of metformin as corrosion inhibitor for mild steel in hydrochloric acid solution. Int J Electrochem Sci 7:4766–4779Google Scholar
  34. 34.
    Karoyo AH, Wilson LD (2017) Physicochemical properties and the gelation process of supramolecular hydrogels: a review. Gels.  https://doi.org/10.3390/gels3010001 CrossRefGoogle Scholar
  35. 35.
    Pareta R, Edirisinghe MJ (2006) A novel method for the preparation of biodegradable microspheres for protein drug delivery. J R Soc Ibterface 3:573–582CrossRefGoogle Scholar
  36. 36.
    Bouchard G, Pagliara A, Carrupt PA, Testa B, Gobry V, Girault HH (2002) Theoretical and experimental exploration of the lipophilicity of zwitterionic drugs in 1,2-dichloroethanewater system. Pharm Res 19:1150–1159CrossRefPubMedGoogle Scholar
  37. 37.
    Williams HD, Trevaskis NL, Charman SA, Shanker RM, Charman WN, Pouton CW, Porter CJH (2013) Strategies to address low drug solubility in discovery and development. Pharmacol Rev 65:315–499CrossRefGoogle Scholar
  38. 38.
    Emeje MO, Obidike IC, Akpabio EI, Ofoefule SI (2012) Nanotechnology in drug delivery. In: Sezer AD (ed) Recent advances in novel drug carrier systems, 1st edn. INTECH, Croatia, pp 69–106Google Scholar
  39. 39.
    Gloria N, Pius U (2018) Spectrophotometric and thermodynamic determination of glibenclamide using 2,3-dichloro-5,6-dicyano-1,4-benzoquinone. J Med Chem Pharmachem Pharm Sci Comput Chem 10:9–15Google Scholar
  40. 40.
    Kushwaha SKS, Ghoshal S, Rai AK, Singh S (2013) Carbon nanotubes as a novel drug delivery system for anticancer therapy: a review. Braz J Pharm Sci 49:629–643CrossRefGoogle Scholar
  41. 41.
    McInnes FJ, Anthony NG, Kennedy AR, Wheate NJ (2010) Solid state stabilisation of the orally delivered drugs atenolol, glibenclamide, memantine and paracetamol through their complexation with cucurbit [7] uril. Org Biomol Chem 8:765–773CrossRefPubMedGoogle Scholar
  42. 42.
    Liu H, Wang C, Li C, Qin Y, Wang Z, Yang F, Li Z, Wang J (2018) A functional chitosan-based hydrogel as a wound dressing and drug delivery system in the treatment of wound healing. RSC Adv 8:7533–7549CrossRefGoogle Scholar
  43. 43.
    Vidović BB, Milašinović NZ, Kotur-Stevuljević JM, Dilber SP, Krušić MTK, Đorđević BI, Knežević-Jugović ZD (2016) Encapsulation of α-lipoic acid into chitosan and alginate/gelatin hydrogel microparticles and its in vitro antioxidant activity. Hem Ind 70:49–58CrossRefGoogle Scholar
  44. 44.
    Peppas A, Bures P, Leobandung W, Ichikawa H (2000) Hydrogels in pharmaceutical formulations. Eur J Pharm Biopharm 50:27–46CrossRefGoogle Scholar
  45. 45.
    Sharpe LA, Daily AM, Horava SD, Peppas NA (2014) Therapeutic applications of hydrogels in oral drug delivery. Expert Opin Drug Deliv 11:901–915CrossRefPubMedPubMedCentralGoogle Scholar
  46. 46.
    Chai Q, Jiao Y, Yu X (2017) Hydrogels for biomedical applications: their characteristics and the mechanisms behind them. Gels.  https://doi.org/10.3390/gels3010006 CrossRefGoogle Scholar
  47. 47.
    Jinuraj KR, Safeeda A, Adarsh VK, Manuel AT, Abdul UC (2015) Quantum chemical correlation of HOMO–LUMO gap and adsorption energy of ZnO and ZnS. Int J Ther Appl 30:14–18Google Scholar
  48. 48.
    Liu X, Peng L, Zhou Y, Zhang Y, Zhang JZH (2018) Computational alanine scanning with interaction entropy for protein–ligand binding free energies. J Chem Theory Comput 13:1772–1780CrossRefGoogle Scholar
  49. 49.
    Pang X, Zhou L, Zhang M, Zhang L, Xu L, Xie F, Yu L, Zhang X (2012) Two rules on the protein–ligand interaction. Open Conf Proc J 3:70–80CrossRefGoogle Scholar
  50. 50.
    Blyzniuk JN, Semenov MA, Shestopalova AV (2016) Intermolecular hydrogen bonds in hetero-complexes of biologically active aromatic ligands: Monte Carlo simulations results. Struct Chem.  https://doi.org/10.1007/s11224-015-0696-3 CrossRefGoogle Scholar
  51. 51.
    Dzade NY, Roldan A, De-Leeuw NH (2014) A density functional theory study of the adsorption of benzene on hematite (α-Fe2O3) surfaces. Minerals 4:89–115CrossRefGoogle Scholar
  52. 52.
    Del-Valle LJ, Díaz A, Puiggalí J (2017) Hydrogels for biomedical applications: cellulose, chitosan, and protein/peptide derivatives. Gels.  https://doi.org/10.3390/gels3030027 CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  • Nancy Liliana Delgadillo Armendariz
    • 1
  • Norma Aurea Rangel Vázquez
    • 1
  • Edgar Marquez Brazon
    • 2
  1. 1.Tecnológico Nacional de México/I.T.AguascalientesMexico
  2. 2.Departamento de Química y Biología, Facultad de Ciencias BásicasUniversidad del NorteBarranquillaColombia

Personalised recommendations