Polymer Bulletin

, Volume 76, Issue 6, pp 3207–3231 | Cite as

Electrochemical supercapacitors of PANI/MWCNT, PEDOT/MWCNT and P(ANI-co-EDOT)/MWCNT nanocomposites

  • Murat AtesEmail author
  • Mehmet Akif Serin
  • Sinan Calisskan
Original Paper


In this study, the composite formations of polyaniline (PANI)/multi-walled carbon nanotube (MWCNT), poly(3,4-ethylenedioxythiophene) (PEDOT)/MWCNT, and poly(aniline-co-3,4-ethylenedioxythiophene) (P(ANI-co-EDOT))/MWCNT were synthesized on glassy carbon electrode by cyclic voltammetry (CV) method. The composite films were characterized by CV, Fourier transform infrared–attenuated reflection spectroscopy, Raman spectroscopy, scanning electron microscopy–energy-dispersive X-ray analysis, thermogravimetric analysis–differential thermal analysis, Brunauer–Emmett–Teller surface analysis, transmission electron microscopy and electrochemical impedance spectroscopy (EIS). The modified electrodes were characterized by CV, galvanostatic charge/discharge and EIS analysis to measure the capacitance, energy and power density values. The highest specific capacitance was obtained as Csp = 590.71 F/g for PANI/MWCNT at a scan rate of 50 mV/s by CV method. The PANI/MWCNT composites are promising electrode materials for high-performance electrical energy storage devices compared to PEDOT/MWCNT or P(ANI-co-EDOT)/MWCNT. The stability tests were also taken for nanocomposite films. PEDOT/MWCNT composites present excellent long cycle life with 97.44% specific capacitance retained after 500 cycles.

Graphical abstract


Composites Nanostructures Energy storage P(ANI-co-EDOT)/MWCNT PANI/MWCNT PEDOT/MWCNT 



The financial support from Namik Kemal University, Tekirdag, Turkey, project number: NKUBAP.01.YL.15.003, is gratefully acknowledged.

Compliance with ethical standards

Conflict of interest

The authors declare that there is no conflict of interests regarding the publication of this paper.


  1. 1.
    Li J, Xie HQ, Li Y, Liu J, Li ZX (2011) Electrochemical properties of graphene nanosheets/polyaniline nanofibers composites as electrode for supercapacitors. J Power Sour 196:10775–10781CrossRefGoogle Scholar
  2. 2.
    Conway BE (1999) Electrochemical supercapacitors: scientific fundamentals and technological applications. Kluwer Academic/Plenum Press, New YorkCrossRefGoogle Scholar
  3. 3.
    Zhang QW, Zhou X, Yang HS (2004) Capacitance properties of composite electrodes prepared by electrochemical polymerization of pyrrole on carbon foam in aqueous solution. J Power Sour 125:141–147CrossRefGoogle Scholar
  4. 4.
    Kötz R, Carlen M (2000) Principles and applications of electrochemical capacitors. Electrochim Acta 45:2483–2498CrossRefGoogle Scholar
  5. 5.
    Shukla AK, Arico AS, Antonucci V (2001) An appraisal of electric automobile power sources. Renew Sustain Energy Rev 5:137–155CrossRefGoogle Scholar
  6. 6.
    Arbizzani C, Mastragostino M, Soavi F (2001) New trends in electrochemical supercapacitors. J Power Sour 100:164–170CrossRefGoogle Scholar
  7. 7.
    Burke A (2000) Ultracapacitor: why, how, and where is the technology. J Power Sour 91:37–50CrossRefGoogle Scholar
  8. 8.
    Lota K, Khomenko V, Frackowiak E (2004) Capacitance properties of poly(3,4-ethylenedioxythiophene)/carbon nanotubes composites. J Phys Chem Solids 65:295–301CrossRefGoogle Scholar
  9. 9.
    Gurunathan K, Murugan AV, Marimuthu R, Mulik UP, Amalnelkar DP (1999) Electrochemically synthesized conducting materials for applications towards technology in electronics, optoelectronics and energy storage devices. Mater Chem Phys 61:173–191CrossRefGoogle Scholar
  10. 10.
    Ryu KS, Lee YG, Hong YS, Park YJ, Wu XL, Kim KM, Kang MG, Park NG, Chang SH (2004) Poly(3,4-ethylenedioxythiophene), (PEDOT) as polymer electrode in redox supercapacitors. Electrochim Acta 50:843–847CrossRefGoogle Scholar
  11. 11.
    Lee RH, Lai HH, Wang JJ, Jeng RJ, Lin JJ (2008) Self-doping effects on the morphology, electrochemical and conductivity properties of self-assembled polyanilines. Thin Solid Films 517:500–505CrossRefGoogle Scholar
  12. 12.
    Frackowiak E, Khomenko V, Jurewicz K, Lota K, Beguin F (2006) Supercapacitors based on conducting polymers/nanotubes composites. J Power Sour 153:413–418CrossRefGoogle Scholar
  13. 13.
    Belanger D, Ren X, Davey J, Uribe F, Gottesfeld S (2000) Characterization and long term performance of polyaniline-based electrochemical capacitors. J Electrochem Soc 147:2923–2929CrossRefGoogle Scholar
  14. 14.
    Fusalba F, Goverec P, Villers D, Belanger D (2001) Electrochemical characterization of polyaniline in nonaqueous electrolyte and its evaluation as electrode material for electrochemical supercapacitors. J Electrochem Soc 148:A1–A6CrossRefGoogle Scholar
  15. 15.
    Hu CC, Chu CH (2000) Electrochemical and textural characterization of iridium-doped polyaniline films for electrochemical capacitors. Mater Chem Phys 65:329–338CrossRefGoogle Scholar
  16. 16.
    Zhu J, Gu H, Luo Z, Haldolaorachige N, Young DP, Wei S, Guo Z (2012) Carbon nanostructure-derived polyaniline metacomposites: electrical, dielectric, and giant magnetoresistive properties. Langmuir 28:10246–10255CrossRefGoogle Scholar
  17. 17.
    Zhu J, Zhang X, Haldoluarachige N, Wang Q, Luo Z, Ryu J, Young DP, Wei S, Guo Z (2012) Polypyrrole metacomposites with different carbon nanostructures. J Mater Chem 22:4996–5005CrossRefGoogle Scholar
  18. 18.
    Pettersson LAA, Carlsson F, Inganas O, Arwin H (1998) Spectroscopic ellipsometry studies of the optical properties of doped poly(3,4-ethylenedioxythiophene): An anisotropic metal. Thin Solid Films 313–314:356–361CrossRefGoogle Scholar
  19. 19.
    Czardybon A, Lapkowski M (2001) Synthesis and electropolymerization of 3,4-ethylenedioxythiophene functionalized with alkoxy groups. Synth Met 119:161–162CrossRefGoogle Scholar
  20. 20.
    Jonas F, Morrison JT (1997) 3,4-polyethylenedioxythiophene (PEDOT): conductive coatings technical applications and properties. Synth Met 85:1397–1398CrossRefGoogle Scholar
  21. 21.
    Sotzing GA, Reddinger JL, Reynolds JR, Steal PJ (1997) Redox active electrochromic polymers from low oxidation monomers containing 3,4-ethylenedioxythiophene (EDOT). Synth Met 84:199–201CrossRefGoogle Scholar
  22. 22.
    Yamato H, Ohwa M, Wernet OW (1995) Stability of polypyrrole and poly(3,4-ethylenedioxythiophene) for biosensor application. J Electroanal Chem 397:163–170CrossRefGoogle Scholar
  23. 23.
    Bobacka J (1999) Potential stability of all-state ion-selective electrodes using conducting as ion-to-electron transducers. Anal Chem 71:4932–4937CrossRefGoogle Scholar
  24. 24.
    Kvarntröm C, Neugebauer H, Blomquist S, Ahonen HJ, Kankare J, Ivaska A (1999) In-situ spectroelectrochemical characterization of poly(3,4-ethylenedioxythiophene). Electrochim Acta 44:2739–2750CrossRefGoogle Scholar
  25. 25.
    Randriamahazaka H, Noel V, Chenrot C (1999) Nucleation and growth of poly(3,4-ethylenedioxythiophene) in acetonitrile on platinum under potentiostatic conditions. J Electroanal Chem 427:103–111CrossRefGoogle Scholar
  26. 26.
    Xie XN, Wang J, Lee KK, Loh KP (2011) Supercapacitive energy storage based on ion-conducting channels in hydrophilized organic Networks. J Polym Sci Part B Polym Phys 49:1234–1240CrossRefGoogle Scholar
  27. 27.
    D’Arcy JM, El-Kady MF, Khine PP, Zhang L, Lee SH, Davis NR, Liu DS, Yeung MT, Kim SY, Turner CL, Lech AT, Hammond PT, Kaner RB (2014) Vapor phase polymerization of nanofibrillar poly(3,4-ethylenedioxythiophene) for supercapacitors. ACS Nano 8:1500–1514CrossRefGoogle Scholar
  28. 28.
    Zhang J, Kong LB, Wang B, Luo YC, Kang L (2009) In-situ electrochemical polymerization of multi-walled carbon nanotube/polyaniline composite films for electrochemical supercapacitors. Synth Met 159:260–266CrossRefGoogle Scholar
  29. 29.
    Zhang J, Kong LB, Cai JJ, Luo YC, Kang L (2010) Nano-composite of polypyrrole/modified mesoporus carbon for electrochemical capacitor application. Electrochim Acta 55:8067–8073CrossRefGoogle Scholar
  30. 30.
    Wang YG, Li HQ, Xia YY (2006) Ordered whiskerlike polyaniline grown on the surface of mesoporous carbon and its electrochemical capacitance performance. Adv Mater 18:2619–2623CrossRefGoogle Scholar
  31. 31.
    Popovic MM, Grgur BN (2004) Electrochemical synthesis and corrosion behavior of thin polyaniline-benzoate film on mild steel. Synth Met 143:191–195CrossRefGoogle Scholar
  32. 32.
    Sobkowiak M, Rebis T, Milczarek G (2017) Electrocatalytic sensing of poly-nitroaromatic compounds on multiwalled carbon nanotubes modified with alkoxysulfonated derivative of PEDOT. Mater Chem Phys 186:108–114CrossRefGoogle Scholar
  33. 33.
    Equilaz M, Gutierrez F, Gonzalez-Dominguez JM, Martinez MT, Rivas G (2016) Single-walled carbon nanotubes covalently functionalized with polytyrosine: a new material for the development of NADH-based biosensors. Biosens Bioelectron 86:308–314CrossRefGoogle Scholar
  34. 34.
    Dhibar S, Sahoo S, Das CK (2013) Fabrication of transition metal-doped polypyrrole/multiwalled carbon nanotubes for supercapacitor applications. J Appl Polym Sci 130:554–562CrossRefGoogle Scholar
  35. 35.
    Yuan CZ, Gao B, Zhang XG (2007) Electrochemical capacitance of NiO/Ru0.35V0.65O2 asymmetric electrochemical capacitor. J Power Sour 173:606–612CrossRefGoogle Scholar
  36. 36.
    Aradilla D, Estrany F, Alemán C (2011) Symmetric supercapacitor based on multilayers of conducting polymers. J Phys Chem C 115:8430–8438CrossRefGoogle Scholar
  37. 37.
    Chen J, Jia C, Wan Z (2014) Novel hybrid nanocomposite based on poly(3,4-ethylenedioxythiophene)/multiwalled carbon nanotubes/graphene as electrode material for supercapacitor. Synth Met 189:69–76CrossRefGoogle Scholar
  38. 38.
    Hao T, Wang W, Yu D (2018) A flexible cotton-based supercapacitor electrode with high stability prepared by multiwalled CNTs/PANI. Min Met Mater Soc 47:4108–4115Google Scholar
  39. 39.
    Basavaraja C, Jung GH, Huh DS (2017) Morphology and electron transport property of polyaniline/poly(3,4-ethylenedioxythiophene) nanocomposite by the copolymerization of aniline and 3,4-ethylenedioxythiophene). Polym Compos 38:261–268CrossRefGoogle Scholar
  40. 40.
    Ates M, Serin MA, Ekmen I, Ertas YN (2015) Supercapacitor behaviors of polyaniline/CuO, polypyrrole/CuO and PEDOT/CuO nanocomposites. Polym Bull 72:2573–2589CrossRefGoogle Scholar
  41. 41.
    Li XG, Li J, Meng QK, Huang MR (2009) Interfacial synthesis and widely controllable conductivity of polythiophene microparticles. J Phys Chem C 113(29):9718–9727CrossRefGoogle Scholar
  42. 42.
    Senthilkumar B, Thenamirtham P, Selvan RK (2011) Structural and electrochemical properties of polythiophene. Appl Surf Sci 257(21):9063–9067CrossRefGoogle Scholar
  43. 43.
    Kuilla T, Bhadra S, Yao P, Kim NH, Bose S, Lee JH (2010) Recent advances in graphene based polymer composites. Prog Polym Sci 35(11):1350–1375CrossRefGoogle Scholar
  44. 44.
    Zhang J, Zhao XS (2012) Conducting polymers directly coated on reduced graphene oxide sheets as high-performance supercapacitor electrodes. J Phys Chem C 116:5420–5426CrossRefGoogle Scholar
  45. 45.
    Zhao G, Yin Y, Wang H, Liu G, Wang Z (2016) Sensitive stripping voltammetric determination of Cd(II) and Pb(II) by a Bi/multi-walled carbon nanotube-emeraldine base polyaniline-Nafion composite modified glassy carbon electrode. Electrochim Acta 220:267–275CrossRefGoogle Scholar
  46. 46.
    Wang Y, Zhang S, Deng Y (2016) Semiconductor to metallic behavior transition in multi-wall carbon nanotubes/polyaniline composites with improved thermoelectric properties. Mater Lett 164:132–135CrossRefGoogle Scholar
  47. 47.
    Yusupov K, Zakhidov A, You S, Stumpf S, Martinez PM, Ishteev A, Vomiero A, Khovaylo V, Schubert U (2018) Influence of oriented CNT forest on thermoelectric properties of polymer-based materials. J Alloys Compd 741:392–397CrossRefGoogle Scholar
  48. 48.
    Ai L, Jiang J (2012) Removal of methylene blue from aqueous solution with self-assembled cylindrical graphene-carbon nanotube hybrid. Chem Eng J 192(2012):156–163CrossRefGoogle Scholar
  49. 49.
    Sarac AS, Geyik H, Parlak EA, Serantoni M (2007) Electrochemical composite formation of thiophene and N-methylpyrrole polymers on carbon fiber microelectrodes: morphology, characterization by surface spectroscopy, and electrochemical impedance spectroscopy. Prog Org Coat 59:28–36CrossRefGoogle Scholar
  50. 50.
    Wu Q, Xu YX, Yao ZY, Liu AR, Shi GQ (2010) Supercapacitors based on flexible graphene/polyaniline nanofiber composite films. ACS Nano 4:1963–1970CrossRefGoogle Scholar
  51. 51.
    Kumar A, Singh RK, Singh HK, Srivastava P, Singh R (2014) Enhanced capacitance and stability of p-toluene sulfonate doped polypyrrole/carbon composite for electrode application in electrochemical capacitors. J Power Sour 246:800–807CrossRefGoogle Scholar
  52. 52.
    Girija TC, Sangaranarayanan MV (2006) Investigation of polyaniline-coated stainless steel electrodes for electrochemical supercapacitors. Synth Met 156:244–250CrossRefGoogle Scholar
  53. 53.
    Guler FG, Gilsing HD, Schulz B, Sarac AS (2012) Impedance and morphology of hydroxyl and chloro-functionalized poly(3,4-propylene dioxythiophene) nanostructures. J Nanosci Nanotechnol 12:7869–7878CrossRefGoogle Scholar
  54. 54.
    Kötz R, Hahn M, Gallay R (2006) Temperature behavior and impedance fundamentals of supercapacitors. J Power Sour 154:550–555CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Department of Chemistry, Faculty of Arts and SciencesNamik Kemal UniversityTekirdagTurkey

Personalised recommendations