Polymer Bulletin

, Volume 76, Issue 6, pp 3195–3206 | Cite as

Building an electron push–pull system of linear conjugated polymers for improving photocatalytic hydrogen evolution efficiency

  • Zijian Wang
  • Na Mao
  • Yongbo Zhao
  • Tongjia Yang
  • Feng Wang
  • Jia-Xing JiangEmail author
Original Paper


A series of linear conjugated polymers with different acceptor units has been synthesized and applied as photocatalysts for hydrogen evolution from water splitting. It was found that the introduction of nitrogen atom into the polymer skeleton could efficiently improve the photocatalytic performance due to the improvement in charge carriers’ transport and separation, and the enhanced interfacial wettability from the hydrogen-bonding interaction between nitrogen atom and water molecule. The replacement position of nitrogen atom also has a big influence on the photocatalytic performance due to the enhanced internal dipole orientation. A high hydrogen evolution rate of 18.7 µmol h−1 was achieved by PyPm with strong acceptor unit of pyrimidine. The results demonstrate that the construction of an electronic push–pull system is an efficient strategy to produce linear conjugated polymer photocatalysts with high photocatalytic performance.

Graphical abstract


Linear conjugated polymers Photocatalysis Acceptor Hydrogen evolution 



This work was supported by the National Natural Science Foundation of China (21574077 and 21304055) and the Fundamental Research Funds for the Central Universities (2016CBZ001 and GK201801001).

Supplementary material

289_2018_2535_MOESM1_ESM.doc (1.2 mb)
Supplementary material 1 (DOC 1279 kb)


  1. 1.
    Kudo A, Miseki Y (2009) Heterogeneous photocatalyst materials for water splitting. Chem Soc Rev 38:253–278CrossRefGoogle Scholar
  2. 2.
    Xiang Q, Yu J, Jaroniec M (2012) Graphene-based semiconductor photocatalysts. Chem Soc Rev 41:782–796CrossRefGoogle Scholar
  3. 3.
    Chen X, Shen S, Guo L, Mao SS (2010) Semiconductor-based photocatalytic hydrogen generation. Chem Rev 110:6503–6570CrossRefGoogle Scholar
  4. 4.
    Xu Y, Jin S, Xu H, Nagai A, Jiang D (2013) Conjugated microporous polymers: design, synthesis and application. Chem Soc Rev 42:8012–8031CrossRefGoogle Scholar
  5. 5.
    Wong Y-L, Tobin JM, Xu Z, Vilela F (2016) Conjugated porous polymers for photocatalytic applications. J Mater Chem A 4:18677–18686CrossRefGoogle Scholar
  6. 6.
    Zhang G, Lan Z-A, Wang X (2016) Conjugated polymers: catalysts for photocatalytic hydrogen evolution. Angew Chem Int Ed 55:15712–15727CrossRefGoogle Scholar
  7. 7.
    Wang L, Wan Y, Ding Y, Wu S, Zhang Y, Zhang X, Zhang G, Xiong Y, Wu X, Yang J, Xu H (2017) Conjugated microporous polymer nanosheets for overall water splitting using visible light. Adv Mater 29:1702428CrossRefGoogle Scholar
  8. 8.
    Wang X, Maeda K, Thomas A, Takanabe K, Xin G, Carlsson JM, Domen K, Antonietti M (2009) A metal-free polymeric photocatalyst for hydrogen production from water under visible light. Nat Mater 8:76–80CrossRefGoogle Scholar
  9. 9.
    Xu Y, Mao N, Feng S, Zhang C, Wang F, Chen Zeng J, Jiang J (2017) Perylene-containing conjugated microporous polymers for photocatalytic hydrogen evolution. Macromol Chem Phys 218:1700049CrossRefGoogle Scholar
  10. 10.
    Xu Y, Zhang C, Mu P, Mao N, Wang X, He Q, Wang F, Jiang J (2017) Tetra-armed conjugated microporous polymers for gas adsorption and photocatalytic hydrogen evolution. Sci China Chem 60:1075–1083CrossRefGoogle Scholar
  11. 11.
    Sprick RS, Jiang JX, Bonillo B, Ren S, Ratvijitvech T, Guiglion P, Zwijnenburg MA, Adams DJ, Cooper AI (2015) Tunable organic photocatalysts for visible-light-driven hydrogen evolution. J Am Chem Soc 137:3265–3270CrossRefGoogle Scholar
  12. 12.
    Wang Z, Yang X, Yang T, Zhao Y, Wang F, Chen Y, Zeng J, Yan C, Huang F, Jiang J (2018) Dibenzothiophene dioxide-based conjugated microporous polymers for visible-light-driven hydrogen production. ACS Catal 8:8590–8596CrossRefGoogle Scholar
  13. 13.
    Stegbauer L, Schwinghammer K, Lotsch BV (2014) A hydrazone-based covalent organic framework for photocatalytic hydrogen production. Chem Sci 5:2789–2793CrossRefGoogle Scholar
  14. 14.
    Vyas VS, Haase F, Stegbauer L, Savasci G, Podjaski F, Ochsenfeld C, Lotsch BV (2015) A tunable azine covalent organic framework platform for visible light-induced hydrogen generation. Nat Commun 6:8508CrossRefGoogle Scholar
  15. 15.
    Meier CB, Sprick RS, Monti A, Guiglion P, Lee J-M, Zwijnenburg MA, Cooper AI (2017) Structure-property relationships for covalent triazine-based frameworks: the effect of spacer length on photocatalytic hydrogen evolution from water. Polymer 126:283–290CrossRefGoogle Scholar
  16. 16.
    Sprick RS, Bonillo B, Sachs M, Clowes R, Durrant JR, Adams DJ, Cooper AI (2016) Extended conjugated microporous polymers for photocatalytic hydrogen evolution from water. Chem Commun 52:10008–10011CrossRefGoogle Scholar
  17. 17.
    Schwab MG, Hamburger M, Feng X, Shu J, Spiess HW, Wang X, Antonietti M, Mullen K (2010) Photocatalytic hydrogen evolution through fully conjugated poly(azomethine) networks. Chem Commun 46:8932–8934CrossRefGoogle Scholar
  18. 18.
    Li L, Cai Z, Wu Q, Lo W-Y, Zhang N, Chen L, Yu L (2016) Rational design of porous conjugated polymers and roles of residual palladium for photocatalytic hydrogen production. J Am Chem Soc 138:7681–7686CrossRefGoogle Scholar
  19. 19.
    Yang C, Ma BC, Zhang L, Lin S, Ghasimi S, Landfester K, Zhang K, Wang X (2016) Molecular engineering of conjugated polybenzothiadiazoles for enhanced hydrogen production by photosynthesis. Angew Chem Int Ed 55:9202–9206CrossRefGoogle Scholar
  20. 20.
    Yanagida S, Kabumoto A, Mizumoto K, Pac C, Yoshino K (1985) Poly(p-phenylene)-catalysed photoreduction of water to hydrogen. J Chem Soc Chem Commun 8:474CrossRefGoogle Scholar
  21. 21.
    Maruyama T, Yamamoto T (1997) Effective photocatalytic system based on chelating π-conjugated poly(2,2′-bipyridine-5,5′-diyl) and platinum for photoevolution of H2 from aqueous media and spectroscopic analysis of the catalyst. J Phys Chem B 101:3806–3810CrossRefGoogle Scholar
  22. 22.
    Sprick RS, Bonillo B, Clowes R, Guiglion P, Brownbill NJ, Slater BJ, Blanc F, Zwijnenburg MA, Adams DJ, Coope AI (2016) Visible-light-driven hydrogen evolution using planarized conjugated polymer photocatalysts. Angew Chem Int Ed 55:1792–1796CrossRefGoogle Scholar
  23. 23.
    Woods DJ, Sprick RS, Smith CL, Cowan AJ, Cooper AI (2017) A solution-processable polymer photocatalyst for hydrogen evolution from water. Adv Energy Mater 7:1700479CrossRefGoogle Scholar
  24. 24.
    Zhang XH, Wang XP, Xiao J, Wang SY, Huang DK, Ding X, Xiang Y-G, Chen H (2017) Synthesis of 1,4-diethynylbenzene-based conjugated polymer photocatalysts and their enhanced visible/near-infrared-light-driven hydrogen production activity. J Catal 350:64–71CrossRefGoogle Scholar
  25. 25.
    Zong X, Miao X, Hua S, An L, Gao X, Jiang W, Qu D, Zhou Z, Liu X, Su Z (2017) Structure defects assisted photocatalytic H2 production for polythiophene nanofibers. Appl Catal B Environ 211:98–105CrossRefGoogle Scholar
  26. 26.
    Wang L, Fernández-Terán R, Zhang L, Fernandes DLA, Tian L, Chen H, Tian H (2016) Organic polymer dots as photocatalysts for visible light-driven hydrogen generation. Angew Chem Int Ed 55:12306–12310CrossRefGoogle Scholar
  27. 27.
    Pati PB, Damas G, Tian L, Fernandes DLA, Zhang L, Pehlivan IB, Edvinsson T, Araujo M, Tian H (2017) An experimental and theoretical study of an efficient polymer nano-photocatalyst for hydrogen evolution. Energy Environ Sci 10:1372–1376CrossRefGoogle Scholar
  28. 28.
    Kerszulis JA, Amb CM, Dyer AL, Reynolds JR (2014) Follow the yellow brick road: structural optimization of vibrant yellow-to-transmissive electrochromic conjugated polymers. Macromolecules 47:5462–5469CrossRefGoogle Scholar
  29. 29.
    Xu Y, Mao N, Zhang C, Wang X, Zeng J, Chen Y, Wang F, Jiang J (2018) Rational design of donor-π-acceptor conjugated microporous polymers for photocatalytic hydrogen production. Appl Catal B Environ 228:1–9CrossRefGoogle Scholar
  30. 30.
    Bhunia A, Esquivel D, Dey S, Fernández-Terán R, Goto Y, Inagaki S, Voort PV, Janiak C (2016) A photoluminescent covalent triazine framework: Co2 adsorption, light-driven hydrogen evolution and sensing of nitroaromatics. J Mater Chem A 4:13450–13457CrossRefGoogle Scholar
  31. 31.
    Martin DJ, Qiu K, Shevlin SA, Handoko AD, Chen X, Guo Z, Tang J (2014) Highly efficient photocatalytic H2 evolution from water using visible light and structure-controlled graphitic carbon nitride. Angew Chem Int Ed 53:9240–9245CrossRefGoogle Scholar
  32. 32.
    He F, Chen G, Yu Y, Hao S, Zhou Y, Zheng Y (2014) Facile approach to synthesize g-PAN/g-C3N4 composites with enhanced photocatalytic H2 evolution activity. ACS Appl Mater Interfaces 6:7171–7179CrossRefGoogle Scholar
  33. 33.
    Lin L, Ou H, Zhang Y, Wang X (2016) Tri-s-triazine-based crystalline graphitic carbon nitrides for highly efficient hydrogen evolution photocatalysis. ACS Catal 6:3921–3931CrossRefGoogle Scholar
  34. 34.
    Li L, Lo W-Y, Cai Z, Zhang N, Yu L (2016) Donor–acceptor porous conjugated polymers for photocatalytic hydrogen production: the importance of acceptor comonomer. Macromolecules 49:6903–6909CrossRefGoogle Scholar
  35. 35.
    Shibata T, Kabumoto A, Shiragami T, Ishitani O, Pac C, Yanagida S (1990) Novel visible-light-driven photocatalyst. poly(p-phenylene)-catalyzed photoreductions of water, carbonyl compounds, and olefins. J Phys Chem 94:2068–2076CrossRefGoogle Scholar
  36. 36.
    Matsuoka S, Fujii H, Yamada T, Pac C, Ishida A, Takamuku S, Kusaba M, Nakashima N, Yanagida S (1991) Photocatalysis of oligo(p-phenylenes): photoreductive production of hydrogen and ethanol in aqueous triethylamine. J Phys Chem 95:5802–5808CrossRefGoogle Scholar
  37. 37.
    Yan H, Huang Y (2011) Polymer composites of carbon nitride and poly(3-hexylthiophene) to achieve enhanced hydrogen production from water under visible light. Chem Commun 47:4168–4170CrossRefGoogle Scholar
  38. 38.
    Mao Z, Chen J, Yang Y, Wang D, Bie L, Fahlman DB (2017) Novel g-C3N4/CoO nanocomposites with significantly enhanced visible-light photocatalytic activity for H2 evolution. ACS Appl Mater Interfaces 9:12427–12435CrossRefGoogle Scholar
  39. 39.
    Yang J, Wang D, Han H, Li C (2013) Roles of cocatalysts in photocatalysis and photoelectrocatalysis. Acc Chem Res 46:1900–1909CrossRefGoogle Scholar
  40. 40.
    Pan C, Xu J, Wang Y, Li D, Zhu Y (2012) Dramatic activity of C3N4/BiPO4 photocatalyst with core/shell structure formed by self-assembly. Adv Funct Mater 22:1518–1524CrossRefGoogle Scholar
  41. 41.
    Yan SC, Lv SB, Li ZS, Zou ZG (2010) Organic-inorganic composite photocatalyst of g-C3N4 and TaON with improved visible light photocatalytic activities. Dalton Trans 39:1488–1491CrossRefGoogle Scholar
  42. 42.
    Wang Y, Shi R, Lin J, Zhu Y (2011) Enhancement of photocurrent and photocatalytic activity of ZnO hybridized with graphite-like C3N4. Energy Environ Sci 4:2922–2929CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Key Laboratory for Macromolecular Science of Shaanxi Province, Shaanxi Key Laboratory for Advanced Energy Devices, School of Materials Science and EngineeringShaanxi Normal UniversityXi’anPeople’s Republic of China
  2. 2.Key Laboratory for Green Chemical Process of Ministry of EducationWuhan Institute of TechnologyWuhanPeople’s Republic of China

Personalised recommendations