Polymer Bulletin

, Volume 76, Issue 6, pp 2899–2913 | Cite as

Evaluation of rheological behavior, anaerobic and thermal degradation, and lifetime prediction of polylactide/poly(butylene adipate-co-terephthalate)/powdered nitrile rubber blends

  • Teresa M. D. Fernandes
  • Janaína F. M. de Almeida
  • Viviane A. Escócio
  • Ana Lucia N. da Silva
  • Ana Maria F. de SousaEmail author
  • Leila L. Y. Visconte
  • Cristina R. G. Furtado
  • Elen B. A. V. Pacheco
  • Márcia C. A. M. Leite
Original Paper


The present study aimed to investigate the effect of powdered nitrile rubber (NBR) content on the morphology, rheological behavior, anaerobic and thermal degradation, and life expectancy of blends based on polylactide (PLA) and poly(butylene adipate-co-terephthalate) (PBAT). The blends were prepared by extrusion and compression molding using a commercial PLA/PBAT (70:30 wt%) blend and powdered NBR coated with calcium carbonate (93:7 wt%). Photomicrographs from scanning electron microscopy revealed that the NBR particles, stained with osmium tetroxide, were preferentially located in the PLA matrix. Additionally, NBR contributed to reducing the size of PBAT domains. The rheological behavior of PLA/PBAT/NBR blends was dependent on rubber content, indicating that NBR plays an important role in blend flowability. Furthermore, a decline was observed in the activation energy needed to degrade 5% of the PLA contained in the blend, reducing the lifespan of NBR-based blends. This behavior was attributed to the thermal conductivity of the calcium carbonate present in the NBR. Finally, anaerobic degradation was not inhibited in the PLA/PBAT/NBR blend containing 20 wt% of rubber, although its biochemical methane potential was lower than that of PLA/PBAT/NBR.


Biomaterials Blending Rubber Rheology Thermal properties Anaerobic biodegradation 



We would like to thank Basf and Nitriflex for donating polymers; the Center for Mineral Technology (CETEM) for the SEM analysis; and the Coordination for the Improvement of Higher Education Personnel (CAPES) for the grants.


  1. 1.
    Imre B, Pukánszky B (2013) Compatibilization in bio-based and biodegradable polymer blends. Eur Polym J 49:1215–1233CrossRefGoogle Scholar
  2. 2.
    Saini P, Arora M, Ravi Kumar NV (2016) Poly(lactic acid) blends in biomedical applications. Adv Drug Deliv Rev 107:47–59CrossRefGoogle Scholar
  3. 3.
    Kun D, Pukánszky B (2017) Polymer/lignin blends: interactions, properties, applications. Eur Polym J 93:618–641CrossRefGoogle Scholar
  4. 4.
    Muthuraj R, Misra M, Mohanty AK (2017) Biodegradable compatibilized polymer blends for packaging applications: a literature review. J Appl Polym Sci. Google Scholar
  5. 5.
    Taguet A, Cassagnau P, Lopez-Cuesta J-M (2014) Structuration, selective dispersion and compatibilizing effect of (nano)fillers in polymer blends. Prog Polym Sci 39(8):1526–1563CrossRefGoogle Scholar
  6. 6.
    Luna MS, Filippone G (2016) Effects of nanoparticles on the morphology of immiscible polymer blends—challenges and opportunities. Eur Polym J 79:198–218CrossRefGoogle Scholar
  7. 7.
    Jiang L, Wolcott MP, Zhang J (2006) Study of biodegradable polylactide/poly(butylene adipate-co-terephthalate)blends. Biomacromolecules 7:199–207CrossRefGoogle Scholar
  8. 8.
    Gu S-Y, Zhang K, Ren J, Zhan H (2008) Melt rheology of polylactide/poly(butylene adipate-co-terephthalate) blends. Carbohydr Polym 74:79–85CrossRefGoogle Scholar
  9. 9.
    Lin S, Guo W, Chen C, Ma J, Wang B (2012) Mechanical properties and morphology of biodegradable poly(lactic acid)/poly(butylene adipate-co-terephthalate) blends compatibilized by transesterification. Mater Des 36:604–608CrossRefGoogle Scholar
  10. 10.
    Abdelwahab MA, Taylor S, Misra M, Mohanty AK (2015) Thermo-mechanical characterization of bioblends from polylactide and poly(butylene adipate-co-terephthalate) and lignin. Macromol Mater Eng 300:299–311CrossRefGoogle Scholar
  11. 11.
    Nofar M, Heuzey MC, Carreau PJ, Kamal MR (2016) Effects of nanoclay and its localization on the morphology stabilization of PLA/PBAT blends under shear flow. Polymer 98:353–364CrossRefGoogle Scholar
  12. 12.
    Wu N, Zhang H (2017) Mechanical properties and phase morphology of super-tough PLA/PBAT/EMA-GMA multicomponent blends. Mater Lett 192:17–20CrossRefGoogle Scholar
  13. 13.
    Fernandes TMD, Leite MCAM, Sousa AMF, Furtado CRG, Escócio VA, Silva ALN (2017) Improvement in toughness of polylactide/poly(butylene adipate-co-terephthalate) blend by adding nitrile rubber. Polym Bull 74:1713–1726CrossRefGoogle Scholar
  14. 14.
    Ramani R, Alam S (2010) Composition optimization of PEEK/PEI blend using model-free kinetics analysis. Thermochim Acta 511:179–188CrossRefGoogle Scholar
  15. 15.
    Henrique MA, Neto WPF, Silvério HA, Martins DF, Gurgel LVA, Barud HS, Morais LC, Pasquini D (2015) Kinetic study of the thermal decomposition of cellulose nanocrystals with different polymorphs, cellulose I and II, extracted from different sources and using different types of acids. Ind Crops Prod 76:128–140CrossRefGoogle Scholar
  16. 16.
    Ferdosian F, Yuan Z, Anderson M, Xu CC (2016) Thermal performance and thermal decomposition kinetics of lignin-based epoxy resins. J Anal Appl Pyrolysis 119:124–132CrossRefGoogle Scholar
  17. 17.
    Mandal DK, Bhunia H, Bajpai OK, Bhalla VK (2017) Thermal degradation kinetics and estimation of lifetime of radiation grafted polypropylene films. Radiat Phys Chem 136:1–8CrossRefGoogle Scholar
  18. 18.
    Paik P, Kar KK (2009) Thermal degradation and estimation of lifetime of polyethylene particles: effects of particle size. Mater Chem Phys 113:953–961CrossRefGoogle Scholar
  19. 19.
    Khedri S, Elyasi S (2016) Kinetic analysis for thermal cracking of HDPE: a new isoconversional approach. Polym Degrad Stab 129:306–318CrossRefGoogle Scholar
  20. 20.
    Yagi H, Ninomiya F, Funabashi M, Kunioka M (2012) Anaerobic biodegradation of poly (lactic acid) film in anaerobic sludge. J Polym Environ 20:673–680CrossRefGoogle Scholar
  21. 21.
    Al-Itry R, Lamnawar K, Maazouz A (2014) Rheological, morphological, and interfacial properties of compatibilized PLA/PBAT blends. Rheol Acta 53:501–517CrossRefGoogle Scholar
  22. 22.
    Nofar MR, Sojoudiasli H, Carreau P (2015) Interfacial and rheological properties of PLA/PBAT and PLA/PBSA blends and their morphological stability under shear flow. J Rheol 59:317–333CrossRefGoogle Scholar
  23. 23.
    Lu X, Zhao J, Yang X, Xiao P (2017) Morphology and properties of biodegradable poly (lactic acid)/poly (butylene adipate-co-terephthalate) blends with different viscosity ratio. Polym Test 60:58–67CrossRefGoogle Scholar
  24. 24.
    Bucchianico A (2008) Coefficient of determination (R2). In: Encyclopedia of statistics in quality and reliability. Wiley Online Library. Wiley.
  25. 25.
    Mofokeng JP, Luyt AS (2015) Morphology and thermal degradation studies of melt-mixed PLA/PHBV biodegradable polymer blend nanocomposites with TiO2 as filler. J Appl Polym Sci. Google Scholar
  26. 26.
    Chatterjee B, Mazumder D (2016) Anaerobic digestion for the stabilization of the organic fraction of municipal solid waste: a review. Environ Rev 24(4):426–459CrossRefGoogle Scholar
  27. 27.
    Abou-Zeid D-M, Muller R-J, Deckwer W-D (2004) Biodegradation of aliphatic homopolyesters and aliphatic-aromatic copolyesters by anaerobic microorganisms. Biomacromolecules 5:1687–1697CrossRefGoogle Scholar
  28. 28.
    Fang S, An X, Liu H, Cheng Y, Hou N, Feng L, Huang X (2015) Enzymatic degradation of aliphatic nitriles by Rhodococcus rhodochrous BX2, a versatile nitrile-degrading bacterium. Bioresour Technol 185:28–34CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  • Teresa M. D. Fernandes
    • 1
    • 2
  • Janaína F. M. de Almeida
    • 3
  • Viviane A. Escócio
    • 3
  • Ana Lucia N. da Silva
    • 2
    • 3
  • Ana Maria F. de Sousa
    • 1
    Email author
  • Leila L. Y. Visconte
    • 2
    • 3
  • Cristina R. G. Furtado
    • 1
  • Elen B. A. V. Pacheco
    • 2
    • 3
  • Márcia C. A. M. Leite
    • 1
  1. 1.Instituto de QuímicaUniversidade do Estado do Rio de JaneiroRio de JaneiroBrazil
  2. 2.Programa de Engenharia AmbientalUniversidade Federal do Rio de JaneiroRio de JaneiroBrazil
  3. 3.Instituto de Macromoléculas Professora Eloisa ManoUniversidade Federal do Rio de JaneiroRio de JaneiroBrazil

Personalised recommendations