Advertisement

Polymer Bulletin

, Volume 76, Issue 6, pp 2991–3002 | Cite as

A novel side-chain ferrocene-containing polymer by combination of Cu(0)-mediated SET-LRP of acrylonitrile and post-modification

  • Liangjiu Bai
  • Anyao Ma
  • Wenxiang WangEmail author
  • Hou ChenEmail author
  • Zhongxin Xue
  • Yanping Cao
  • Yuzhong Niu
Original Paper
  • 78 Downloads

Abstract

Well-defined side-chain ferrocene-containing polymers have been synthesized by post-modification of well-defined polyacrylonitrile (PAN). PAN prepared by Cu(0)-mediated single-electron transfer living radical polymerization was further modified using sodium azide and ammonium chloride (NH4Cl) to yield polymeric materials with vinyltetrazole units. Side-chain ferrocene-containing polymer was prepared by vinyltetrazole units and hydroxymethylferrocene after Mitsunobu reaction. FTIR, 1H NMR, UV–Vis spectroscopy and thermogravimetric analysis were used to identify the structure of the target product. After linked the ferrocene unit, the final polymer showed typical redox property with a more negative redox potential (E1/2).

Keywords

Polyacrylonitrile Controlled radical polymerization Ferrocene-containing polymer 

Notes

Acknowledgements

The study was financially supported by the National Natural Science Foundation of China (Nos. 51773086, 51573075 and 21501087), the Project of Shandong Province Higher Educational Science and Technology Program (No. J16LC20 and J18KA080) and the Program for Scientific Research Innovation Team in Colleges and universities of Shandong Province.

References

  1. 1.
    Fournier D, Hoogenboom R, Schubert US (2007) Clicking polymers: a straight forward approach to novel macromolecular architectures. Chem Soc Rev 36:1369–1380CrossRefGoogle Scholar
  2. 2.
    Wang J, Wang XB, Xue WT, Chen GJ, Zhang WD, Zhu XL (2016) Initiator and photocatalyst-free visible light induced one-pot reaction: concurrent RAFT polymerization and CuAAC click reaction. Macromol Rapid Commun 37:799–804CrossRefGoogle Scholar
  3. 3.
    Binder WH, Sachsenhofer R (2007) Chemistry in polymer and materials science. Macromol Rapid Commun 28:15–24CrossRefGoogle Scholar
  4. 4.
    Franc G, Kakkar AK (2010) “Click” methodologies: efficient, simple and greener routes to design dendrimers. Chem Soc Rev 39:1536–1544CrossRefGoogle Scholar
  5. 5.
    Tasdelen MA (2011) Diels-Alder “click” reactions: recent applications in polymer and material science. Polym Chem 2:2133–2145CrossRefGoogle Scholar
  6. 6.
    Grover GN, Lam J, Nguyen TH, Segura T, Maynard HD (2012) Biocompatible hydrogels by oxime click chemistry. Biomacromol 13:3013–3017CrossRefGoogle Scholar
  7. 7.
    Li XG, Kresse I, Springer J, Nissen J, Yang YL (2001) Morphology and gas permselectivity of blend membranes of polyvinylpyridine with ethylcellulose. Polymer 42:6859–6869CrossRefGoogle Scholar
  8. 8.
    Huang MR, Li XG, Li SX, Zhang W (2004) Resultful synthesis of polyvinyltetrazole from polyacrylonitrile. React Funct Polym 59:53–61CrossRefGoogle Scholar
  9. 9.
    Barboiu B, Percec V (2001) Metal catalyzed living radical polymerization of acrylonitrile initiated with sulfonyl chlorides. Macromolecules 34(25):8626–8636CrossRefGoogle Scholar
  10. 10.
    Tsarevsky NV, Bernaerts KV, Dufour B, Prez FED, Matyjaszewski K (2004) Well-defined (Co)polymers with 5-vinyltetrazole units via combination of atom transfer radical (Co)polymerization of acrylonitrile and “click chemistry”-type postpolymerization Modification. Macromolecules 37:9308–9313CrossRefGoogle Scholar
  11. 11.
    Chen YN, He MF, Wang CZ, Wei YM (2014) A novel polyvinyltetrazole-grafted resin with high capacity for adsorption of Pb(II), Cu(II) and Cr(III) ions from aqueous solutions. J Mater Chem A 2:10444–10453CrossRefGoogle Scholar
  12. 12.
    Hardy CG, Ren LX, Tamboue TC, Tang CB (2011) Side-chain ferrocene-containing (meth)acrylate polymers: synthesis and properties. J Polym Sci, Part A: Polym Chem 49:1409–1420CrossRefGoogle Scholar
  13. 13.
    Shunmugam R, Gabriel GJ, Aamer KA, Tew GN (2010) Metal-ligand-containing polymers: terpyridine as the supramolecular unit. Macromol Rapid Commun 31:784–793CrossRefGoogle Scholar
  14. 14.
    D’Arcy R, Tirelli N (2015) Mitsunobu reaction: a versatile tool for PEG end functionalization. Macromol Rapid Commun 36:1829–1835CrossRefGoogle Scholar
  15. 15.
    Hughes DL (1996) Progress in the mitsunobu reaction: a review. Org Prep Proced Int 28:127–164CrossRefGoogle Scholar
  16. 16.
    Jenkins AD, Jones RG, Moad G (2010) Terminology for reversible-deactivation radical polymerization previously called “controlled” radical or “living” radical polymerization. Pure Appl Chem 82:483–491CrossRefGoogle Scholar
  17. 17.
    Matyjaszewski K, Xia J (2001) Atom transfer radical polymerization. Chem Rev 101:2921–2990CrossRefGoogle Scholar
  18. 18.
    Hawker CJ, Bosman AW, Harth E (2001) New polymer synthesis by nitroxide mediated living radical polymerizations. Chem Rev 101:3661–3688CrossRefGoogle Scholar
  19. 19.
    Kowollik B (2008) Handbook of RAFT polymerization, vol 1. Wiley, Weinheim, pp 1–4CrossRefGoogle Scholar
  20. 20.
    Percec V, Guliashvili T, Ladislaw JS, Wistrand A, Stjerndahl A, Sienkowska MJ, Monteiro MJ, Sahoo S (2006) Ultrafast synthesis of ultrahigh molar mass polymers by metal-catalyzed living radical polymerization of acrylates, methacrylates, and vinyl chloride mediated by SET at 25 °C. J Am Chem Soc 128:14156–14165CrossRefGoogle Scholar
  21. 21.
    Grama S, Lejnieks J, Enayati M, Smail RB, Ding L, Lligadas G, Monteiro MJ, Percec V (2017) Searching for efficient SET-LRP systems via biphasic mixtures of water with carbonates, ethers and dipolar aprotic solvents. Polym Chem 8(38):5865–5874CrossRefGoogle Scholar
  22. 22.
    Klein ML, Percec V (2018) Frontiers of macromolecular and supramolecular science symposia. Polym Chem 9(18):2355–2358CrossRefGoogle Scholar
  23. 23.
    Levere ME, Nguyen NH, Leng X, Percec V (2013) Visualization of the crucial step in SET-LRP. Polym Chem 4(5):1635–1647CrossRefGoogle Scholar
  24. 24.
    Lligadas G, Grama S, Percec V (2017) Single-electron transfer living radical polymerization platform to practice, develop, and invent. Biomacromol 18(10):2981–3008CrossRefGoogle Scholar
  25. 25.
    Rosen BM, Wilson CJ, Wilson DA, Peterca M, Imam MR, Percec V (2009) Dendron-mediated self-assembly, disassembly, and self-organization of complex systems. Chem Rev 109(11):6275–6540CrossRefGoogle Scholar
  26. 26.
    Chen H, Zhang M, Yu MM, Jiang HY (2011) Continuous SET-LRP of acrylonitrile in iron tube without any ligand. J Polym Sci, Part A: Polym Chem 49:4721–4724CrossRefGoogle Scholar
  27. 27.
    Chen H, Liang Y, Wang ML, Lv PL, Xuan YH (2009) Reverse ATRP of ethyl acrylate with ionic liquids as reaction medium. Chem Eng J 147:297–301CrossRefGoogle Scholar
  28. 28.
    Liu X, Chen H, Wang CH, Qu RJ, Ji CN, Sun CM, Zhang Y (2010) Synthesis of porous acrylonitrile/methyl acrylate copolymer beads by suspended emulsion polymerization and their adsorption properties after amidoximation. J Hazard Mater 175:1014–1021CrossRefGoogle Scholar
  29. 29.
    Zong GX, Chen H, Qu RJ, Wang CH, Ji NY (2011) Synthesis of polyacrylonitrile-grafted cross-linked N-chlorosulfonamidated polystyrene via surface-initiated ARGET ATRP, and use of the resin in mercury removal after modification. J Hazard Mater 186:614–621CrossRefGoogle Scholar
  30. 30.
    Xu YY, Sun JM, Chen H, Bai LJ (2015) Synthesis of polyacrylonitrile by reversible-deactivation radical polymerization and its application as electrode materials for electrochemical double layer capacitors. RSC Adv 5:37780–37788CrossRefGoogle Scholar
  31. 31.
    Bosch L, Vilarrasa J (2007) Cu2(OTf)2-catalyzed and microwave-controlled preparation of tetrazoles from nitriles and organic azides under mild, safe conditions. Angew Chem 46:3926–3930CrossRefGoogle Scholar
  32. 32.
    Ostrovskii VA, Koren AO (2000) Alkylation and related electrophilic reactions at endocyclic nitrogen atoms in the chemistry of tetrazoles. Heterocycles 53:1421–1453CrossRefGoogle Scholar
  33. 33.
    Wang WX, Liu Y, Wang YX, Chen H, Bai LJ (2018) A novel and convenient preparation of antibacterial polyacrylonitrile nanofibers via post-modification using nitrile click chemistry and electrospinning. Chem Pap 72:191–200CrossRefGoogle Scholar
  34. 34.
    Darkow R, Hartmann U, Tomaschewski G (1997) Synthesis, photomodification and characterization of homo- and copolymers with 2,5-bisaryltetrazolyl pendant groups. React Funct Polym 32:195–207CrossRefGoogle Scholar
  35. 35.
    Astruc D, Ornelas C, Ruiz J (2009) Dendritic molecular electrochromic batteries based on redox-robust metallocenes. Chem Eur J 15:8936–8944CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Key Laboratory of High Performance and Functional Polymer in the Universities of Shandong Province, School of Chemistry and Materials ScienceLudong UniversityYantaiChina
  2. 2.Collaborative Innovation Center of Shandong Province for High Performance Fibers and Their CompositesLudong UniversityYantaiChina

Personalised recommendations