Advertisement

Polymer Bulletin

, Volume 76, Issue 6, pp 3039–3058 | Cite as

Multi-response optimization in impregnation of chitosan nanoparticles on polyester fabric

  • Zulfiqar Ali RazaEmail author
  • Faiza Anwar
  • Sharjeel Abid
Original Paper
  • 75 Downloads

Abstract

A Taguchi design was employed to optimize the recipe for in vitro antibacterial activity of polyester fabric treated with chitosan nanoparticles (CNPs), which were prepared using sodium tripolyphosphate as cross-linker under ionic gelation method. The CNPs treated polyester fabric with recommended recipe under Taguchi design showed about 5 mm zone of inhibition against E. coli and 5.5 mm against S. aureus. Scanning electron microscopy installed with an energy-dispersive x-ray detector was used to observe the morphology and presence of CNPs on the treated fabric. Based on statistical design, it was found that optimum process conditions were 15 g/l of CNPs, 90 g/l of cross-linker and 140 °C curing temperature. Analysis of variation indicated that the concentration of CNPs and cross-linker significantly affected the antibacterial properties of polyester fabric. Finally, a validation run confirmed the authenticity of proposed recipe. The polyester fabric showed good antibacterial activity with minimum loss of its inherent textile properties.

Keywords

Antibacterial Chitosan Polyester fabric Nanoparticles 

Notes

Acknowledgement

The authors highly recognize the Higher Education Commission of Pakistan for research fund to conduct this study.

References

  1. 1.
    Aiba S (1992) Studies on chitosan: 4. lysozymic hydrolysis of partially N-acetylated chitosans. Int J Biol Macromol 14:225–228CrossRefGoogle Scholar
  2. 2.
    Dong Y, Ng WK, Shen S, Kim S, Tan RBH (2013) Scalable ionic gelation synthesis of chitosan nanoparticles for drug delivery in static mixers. Carbohydr Polym 94:940–945CrossRefGoogle Scholar
  3. 3.
    Wang JJ, Zeng Z, Xiao RZ, Xie T, Zhou GL, Zhan XR, Wang SL (2011) Recent advances of chitosan nanoparticles as drug carriers. Int J Nanomed 6:765–774Google Scholar
  4. 4.
    Rodriguez-Vazquez M, Vega-Ruiz B, Ramos-Zuniga R, Saldana-Koppel DA, Quinones-Olvera LF (2015) Chitosan and its potential use as a scaffold for tissue engineering in regenerative medicine. Biomed Res Int.  https://doi.org/10.1155/2015/821279 Google Scholar
  5. 5.
    Straccia MC, D’Ayala GG, Romano I, Oliva A, Laurienzo P (2015) Alginate hydrogels coated with chitosan for wound dressing. Mar Drugs 13:2890–2908.  https://doi.org/10.3390/md13052890 CrossRefGoogle Scholar
  6. 6.
    Pokhrel S, Yadav PN, Adhikari R (2015) Applications of chitin and chitosan in industry and medical science: a review demineralised powder. Nepal J Sci Technol 16:99–104CrossRefGoogle Scholar
  7. 7.
    Xia W, Liu P, Zhang J, Chen J (2011) Biological activities of chitosan and chitooligosaccharides. Food Hydrocoll 25:170–179.  https://doi.org/10.1016/j.foodhyd.2010.03.003 CrossRefGoogle Scholar
  8. 8.
    Saharan V, Mehrotra A, Khatik R, Rawal P, Sharma SS, Pal A (2013) Synthesis of chitosan based nanoparticles and their in vitro evaluation against phytopathogenic fungi. Int J Biol Macromol 62:677–683.  https://doi.org/10.1016/j.ijbiomac.2013.10.012 CrossRefGoogle Scholar
  9. 9.
    Jana S, Maji N, Nayak AK, Sen KK, Basu SK (2013) Development of chitosan-based nanoparticles through inter-polymeric complexation for oral drug delivery. Carbohydr Polym 98:870–876.  https://doi.org/10.1016/j.carbpol.2013.06.064 CrossRefGoogle Scholar
  10. 10.
    Alishahi A, Mirvaghefi A, Tehrani MR, Farahmand H, Shojaosadati SA, Dorkoosh FA, Elsabee MZ (2011) Shelf life and delivery enhancement of vitamin C using chitosan nanoparticles. Food Chem 126:935–940.  https://doi.org/10.1016/j.foodchem.2010.11.086 CrossRefGoogle Scholar
  11. 11.
    Abid S, Raza ZA, Rehman A (2016) Synthesis of poly(3-hydroxybutyrate) nanospheres and deposition thereof into porous thin film. Mater Res Express 3:105042.  https://doi.org/10.1088/2053-1591/3/10/105042 CrossRefGoogle Scholar
  12. 12.
    Hassan M, Reddy KR, Haque E, Minett AI, Gomes VG (2013) High-yield aqueous phase exfoliation of graphene for facile nanocomposite synthesis via emulsion polymerization. J Colloid Interface Sci 410:43–51.  https://doi.org/10.1016/j.jcis.2013.08.006 CrossRefGoogle Scholar
  13. 13.
    Rao JP, Geckeler KE (2011) Polymer nanoparticles: preparation techniques and size-control parameters. Prog Polym Sci 36:887–913.  https://doi.org/10.1016/j.progpolymsci.2011.01.001 CrossRefGoogle Scholar
  14. 14.
    Reddy KR, Hassan M, Gomes VG (2015) Hybrid nanostructures based on titanium dioxide for enhanced photocatalysis. Appl Catal A Gen 489:1–16.  https://doi.org/10.1016/j.apcata.2014.10.001 CrossRefGoogle Scholar
  15. 15.
    Zhang J, Lu Z, Wu M, Wu Q, Yang J, Jin ZL, Wang YF, Jin ZL (2015) Facile fabrication of poly(acrylic acid) hollow nanogels via in situ pickering miniemulsion polymerization. Polym Chem 6:6125–6128.  https://doi.org/10.1039/C5PY00822K CrossRefGoogle Scholar
  16. 16.
    Elmizadeh H, Khanmohammadi M, Ghasemi K, Hassanzadeh G, Nassiri-Asl M, Garmarudi AB (2013) Preparation and optimization of chitosan nanoparticles and magnetic chitosan nanoparticles as delivery systems using Box–Behnken statistical design. J Pharm Biomed Anal 80:141–146.  https://doi.org/10.1016/j.jpba.2013.02.038 CrossRefGoogle Scholar
  17. 17.
    Jonassen H, Kjoniksen AL, Hiorth M (2012) Stability of chitosan nanoparticles cross-linked with tripolyphosphate. Biomacromol 13:3747–3756.  https://doi.org/10.1021/bm301207a CrossRefGoogle Scholar
  18. 18.
    Azeem A, Nasir J, Abid S, Zafar A, Sethi A, Riaz B (2015) Modeling and optimization of performance properties of drapery fabrics made by cotton. Int J Text Sci 4:60–65.  https://doi.org/10.5923/j.textile.20150403.02 Google Scholar
  19. 19.
    Azeem A, Nazir A, Abid S, Sarwar Z, Munir U (2017) Modelling of fabric structure and shade for UV protection properties using full factorial design. J Text Inst 5000:1–8.  https://doi.org/10.1080/00405000.2017.1287527 Google Scholar
  20. 20.
    Hossain I, Hossain A, Choudhury IA (2015) Dyeing process parameters optimisation and colour strength prediction for viscose/lycra blended knitted fabrics using Taguchi method. J Text Inst 107:154–164.  https://doi.org/10.1080/00405000.2015.1018669 Google Scholar
  21. 21.
    Mai W, Deng X (2010) The applications of statistical quantification techniques in nanomechanics and nanoelectronics. Nanotechnology. 21:405704.  https://doi.org/10.1088/0957-4484/21/40/405704 CrossRefGoogle Scholar
  22. 22.
    Bolboaca SD, Jantschi L (2007) Design of experiments: useful orthogonal arrays for number of experiments from 4 to 16. Entropy 9:198–232.  https://doi.org/10.3390/e9040198 CrossRefGoogle Scholar
  23. 23.
    Nischala K, Rao TN, Hebalkar N (2011) Silica-silver core-shell particles for antibacterial textile application. Colloids Surf B Biointerfaces 82:203–208.  https://doi.org/10.1016/j.colsurfb.2010.08.039 CrossRefGoogle Scholar
  24. 24.
    Paszkiewicz M, Gołąbiewska A, Rajski Ł, Kowal E, Sajdak A, Zaleska-Medynska A, Kowal E, Sajdak A, Zaleska-Medynska A (2016) The antibacterial and antifungal textile properties functionalized by bimetallic nanoparticles of Ag/Cu with different structures. J Nanomater 2016:1–13.  https://doi.org/10.1155/2016/6056980 Google Scholar
  25. 25.
    Yuranova T, Rincon AG, Bozzi A, Parra S, Pulgarin C, Albers P, Kiwi J (2003) Antibacterial textiles prepared by RF-plasma and vacuum-UV mediated deposition of silver. J Photochem Photobiol A Chem 161:27–34.  https://doi.org/10.1016/S1010-6030(03)00204-1 CrossRefGoogle Scholar
  26. 26.
    Romanò CL, Romanò D, De Vecchi E, Logoluso N, Drago L (2012) Antibacterial finishing reduces hospital textiles contamination. An experimental study. Eur Orthop Traumatol 3:177–182.  https://doi.org/10.1007/s12570-012-0114-x CrossRefGoogle Scholar
  27. 27.
    Raza ZA, Anwar F (2017) Fabrication of chitosan nanoparticles and multi-response optimization in their application on cotton fabric by using a Taguchi approach. Nano Struct Nano Objects 10:80–90.  https://doi.org/10.1016/j.nanoso.2017.03.007 CrossRefGoogle Scholar
  28. 28.
    Raza ZA, Anwar F, Ahmad S, Aslam M (2016) Fabrication of ZnO incorporated chitosan nanocomposites for enhanced functional properties of cellulosic fabric. Mater Res Express 3:115001.  https://doi.org/10.1088/2053-1591/3/11/115001 CrossRefGoogle Scholar
  29. 29.
    Peirce FT (1930) The “HANDLE” of cloth as a measurable quantity. J Text Inst Trans 21:T377–T416.  https://doi.org/10.1080/19447023008661529 CrossRefGoogle Scholar
  30. 30.
    Vankanti VK, Ganta V (2014) Optimization of process parameters in drilling of GFRP composite using Taguchi method. J Mater Res Technol 3:35–41.  https://doi.org/10.1016/j.jmrt.2013.10.007 CrossRefGoogle Scholar
  31. 31.
    Yen MS, Huang KS (2000) The study of rapid curing crease-resistant processing on cotton fabrics. Part I. The effect of chitosan on the physical properties of processed fabrics. J Appl Polym Sci 78:35–40.  https://doi.org/10.1002/1097-4628(20001003)78:1%3c35:AID-APP60%3e3.0.CO;2-S CrossRefGoogle Scholar
  32. 32.
    Rahman Bhuiyan MA, Hossain MA, Zakaria M, Islam MN, Zulhash Uddin M (2016) Chitosan coated cotton fiber: physical and antimicrobial properties for apparel use. J Polym Environ.  https://doi.org/10.1007/s10924-016-0815-2 Google Scholar
  33. 33.
    Tan H, Ma R, Lin C, Liu Z, Tang T (2013) Quaternized chitosan as an antimicrobial agent: antimicrobial activity, mechanism of action and biomedical applications in orthopedics. Int J Mol Sci 14:1854–1869.  https://doi.org/10.3390/ijms14011854 CrossRefGoogle Scholar
  34. 34.
    Waseem I, Zahid S, Sharjeel A, Usman M, Abdul A (2017) Aloe vera leaf gel extract for antibacterial and softness properties of cotton. J Text Sci Eng.  https://doi.org/10.4172/2165-8064.1000301 Google Scholar
  35. 35.
    Eltahlawy K, Elbendary M, Elhendawy A, Hudson S (2005) The antimicrobial activity of cotton fabrics treated with different crosslinking agents and chitosan. Carbohydr Polym 60:421–430.  https://doi.org/10.1016/j.carbpol.2005.02.019 CrossRefGoogle Scholar
  36. 36.
    Alonso D, Gimeno M, Olayo R, Vázquez-Torres H, Sepúlveda-Sánchez JD, Shirai K (2009) Cross-linking chitosan into UV-irradiated cellulose fibers for the preparation of antimicrobial-finished textiles. Carbohydr Polym 77:536–543.  https://doi.org/10.1016/j.carbpol.2009.01.027 CrossRefGoogle Scholar
  37. 37.
    Zhang Z, Chen L, Ji J, Huang Y, Chen D (2003) Antibacterial properties of cotton fabrics treated with chitosan. Text Res J 73:1103–1106.  https://doi.org/10.1177/004051750307301213 CrossRefGoogle Scholar
  38. 38.
    Lim S-H, Hudson SM (2004) Application of a fiber-reactive chitosan derivative to cotton fabric as an antimicrobial textile finish. Carbohydr Polym 56:227–234.  https://doi.org/10.1016/j.carbpol.2004.02.005 CrossRefGoogle Scholar
  39. 39.
    Ye W, Xin JH, Li P, Lee K-LD, Kwong T-L (2006) Durable antibacterial finish on cotton fabric by using chitosan-based polymeric core-shell particles. J Appl Polym Sci 102:1787–1793.  https://doi.org/10.1002/app.24463 CrossRefGoogle Scholar
  40. 40.
    Abid S, Raza ZA, Hussain T (2016) Production kinetics of polyhydroxyalkanoates by using Pseudomonas aeruginosa gamma ray mutant strain EBN-8 cultured on soybean oil. 3 Biotech 6:142.  https://doi.org/10.1007/s13205-016-0452-4 CrossRefGoogle Scholar
  41. 41.
    Raza ZA, Abid S, Rehman A, Hussain T (2016) Synthesis kinetics of poly(3-hydroxybutyrate) by using a Pseudomonas aeruginosa mutant strain grown on hexadecane. Int Biodeterior Biodegrad 115:171–178.  https://doi.org/10.1016/j.ibiod.2016.08.005 CrossRefGoogle Scholar
  42. 42.
    Zaman M, Liu H, Xiao H, Chibante F, Ni Y (2013) Hydrophilic modification of polyester fabric by applying nanocrystalline cellulose containing surface finish. Carbohydr Polym 91:560–567.  https://doi.org/10.1016/j.carbpol.2012.08.070 CrossRefGoogle Scholar
  43. 43.
    Lawrie G, Keen I, Drew B, Chandler-Temple A, Rintoul L, Fredericks P, Grøndahl L (2007) Interactions between alginate and chitosan biopolymers characterized using FTIR and XPS. Biomacromol 8:2533–2541.  https://doi.org/10.1021/bm070014y CrossRefGoogle Scholar
  44. 44.
    Lee YR, Kim SC, Il Lee H, Jeong HM, Raghu AV, Reddy KR, Kim BK (2011) Graphite oxides as effective fire retardants of epoxy resin. Macromol Res 19:66–71.  https://doi.org/10.1007/s13233-011-0106-7 CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  • Zulfiqar Ali Raza
    • 1
    Email author
  • Faiza Anwar
    • 1
    • 2
  • Sharjeel Abid
    • 1
  1. 1.Department of Applied SciencesNational Textile UniversityFaisalabadPakistan
  2. 2.School of Textile and DesignUniversity of Management and TechnologyLahorePakistan

Personalised recommendations