Advertisement

Polymer Bulletin

, Volume 76, Issue 5, pp 2579–2599 | Cite as

Investigation of mechanical and morphological properties of acrylonitrile butadiene styrene nanocomposite foams from analytical hierarchy process point of view

  • Taher Azdast
  • Richard Eungkee Lee
  • Rezgar HasanzadehEmail author
  • Milad Moradian
  • Sajjad Mamaghani Shishavan
Original Paper

Abstract

Acrylonitrile butadiene styrene/nanoclay/polymethyl methacrylate nanocomposites were chemically foamed using injection molding process under different processing conditions. X-ray diffraction, scanning electron microscopy, and standard experimental tests were employed to study the morphological and mechanical properties of nanocomposite foams. The hardness is increased by 54%, and tensile strength is improved by 10% in samples containing 2 wt% of nanoclay compared to pure polymer. The effect of input parameters on the morphological and mechanical properties is studied using Taguchi approach. According to analysis of variance results, holding pressure is the most effective parameter on cell size, cell density, and relative density with the contribution of 90%, 70%, and 41%, respectively. On the other hand, nanoclay content is the most effective parameter on the tensile strength and hardness with the contribution of 79% and 89%, respectively. Analytical hierarchy process is used as a multi-criteria decision-making method in order to select the best alternative among different samples considering different morphological or mechanical criteria based on sensitivity analyses. Polymeric nanocomposite foam sample produced at 2 wt% nanoclay, injection pressure of 140 MPa, and holding pressure of 110 MPa was the best alternative in most cases.

Keywords

Polymeric nanocomposite foam AHP Morphological properties Mechanical properties Sensitivity analysis 

References

  1. 1.
    Eungkee Lee R, Hasanzadeh R, Azdast T (2017) A multi-criteria decision analysis on injection moulding of polymeric microcellular nanocomposite foams containing multi-walled carbon nanotubes. Plast Rubber Compos 46(4):155–162CrossRefGoogle Scholar
  2. 2.
    Notario B, Pinto J, Rodríguez-Pérez MA (2015) Towards a new generation of polymeric foams: PMMA nanocellular foams with enhanced physical properties. Polymer 63:116–126CrossRefGoogle Scholar
  3. 3.
    Okolieocha C, Beckert F, Herling M, Breu J, Mülhaupt R, Altstädt V (2015) Preparation of microcellular low-density PMMA nanocomposite foams: influence of different fillers on the mechanical, rheological and cell morphological properties. Compos Sci Technol 118:108–116CrossRefGoogle Scholar
  4. 4.
    Mantaranon N, Chirachanchai S (2016) Polyoxymethylene foam: from an investigation of key factors related to porous morphologies and microstructure to the optimization of foam properties. Polymer 96:54–62CrossRefGoogle Scholar
  5. 5.
    Moghri M, Khakpour M, Akbarian M, Saeb MR (2015) Employing response surface approach for optimization of fusion characteristics in rigid foam PVC/clay nanocomposites. J Vinyl Add Technol 21(1):51–59CrossRefGoogle Scholar
  6. 6.
    Fu J, Naguib HE (2006) Effect of nanoclay on the mechanical properties of PMMA/clay nanocomposite foams. J Cell Plast 42(4):325–342CrossRefGoogle Scholar
  7. 7.
    Sargazi G, Afzali D, Mostafavi A (2018) An efficient and controllable ultrasonic-assisted microwave route for flower-like Ta(V)–MOF nanostructures: preparation, fractional factorial design, DFT calculations, and high-performance N2 adsorption. J Porous Mater.  https://doi.org/10.1007/s10934-018-0586-3 Google Scholar
  8. 8.
    Anjana R, Krishnan AK, Goerge TS, George KE (2014) Design of experiments for thermo-mechanical behavior of polypropylene/high-density polyethylene/nanokaolinite clay composites. Polym Bull 71(2):315–335CrossRefGoogle Scholar
  9. 9.
    Nejad SJH, Hasanzadeh R, Doniavi A, Modanloo V (2017) Finite element simulation analysis of laminated sheets in deep drawing process using response surface method. Int J Adv Manuf Technol 93(9–12):3245–3259CrossRefGoogle Scholar
  10. 10.
    Sargazi G, Afzali D, Mostafavi A, Ebrahimipour SY (2018) Synthesis of CS/PVA biodegradable composite nanofibers as a microporous material with well controllable procedure through electrospinning. J Polym Environ 26(5):1804–1817CrossRefGoogle Scholar
  11. 11.
    Sargazi G, Afzali D, Mostafavi A, Ebrahimipour SY (2017) Ultrasound-assisted facile synthesis of a new tantalum(V) metal–organic framework nanostructure: design, characterization, systematic study, and CO2 adsorption performance. J Solid State Chem 250:32–48CrossRefGoogle Scholar
  12. 12.
    Akbay İK, Güngör A, Özdemir T (2017) Optimization of the vulcanization parameters for ethylene–propylene–diene termonomer (EPDM)/ground waste tyre composite using response surface methodology. Polym Bull 74(12):5095–5109CrossRefGoogle Scholar
  13. 13.
    Mojaver P, Khalilarya S, Chitsaz A (2018) Performance assessment of a combined heat and power system: a novel integrated biomass gasification, solid oxide fuel cell and high-temperature sodium heat pipe system part I: thermodynamic analysis. Energy Convers Manag 171:287–297CrossRefGoogle Scholar
  14. 14.
    Sargazi G, Afzali D, Daldosso N, Kazemian H, Chauhan NPS, Sadeghian Z, Tajerian T, Ghafarinazari A, Mozafari M (2015) A systematic study on the use of ultrasound energy for the synthesis of nickel–metal organic framework compounds. Ultrason Sonochem 27:395–402CrossRefGoogle Scholar
  15. 15.
    Azdast T, Hasanzadeh R, Moradian M (2017) Optimization of process parameters in FSW of polymeric nanocomposites to improve impact strength using step wise tool selection. Mater Manuf Process 33(3):343–349CrossRefGoogle Scholar
  16. 16.
    Fattahian Y, Riahi-Madvar A, Mirzaee R, Torkzadeh-Mahani M, Asadikaram G, Sargazi G (2018) Optimization of in vitro refolding conditions of recombinant Lepidium draba peroxidase using design of experiments. Int J Biol Macromol.  https://doi.org/10.1016/j.ijbiomac.2018.06.122 Google Scholar
  17. 17.
    Molani S, Azdast T, Doniavi A, Hasanzadeh R, Moradian M, Mamaghani Shishavan S (2018) A Taguchi analysis on structural properties of polypropylene microcellular nanocomposite foams containing Fe2O3 nanoparticles in batch process. Plast Rubber Compos 47(3):106–112CrossRefGoogle Scholar
  18. 18.
    Rashahmadi S, Hasanzadeh R, Mosalman S (2017) Improving the mechanical properties of poly methyl methacrylate nanocomposites for dentistry applications reinforced with different nanoparticles. Polym-Plast Technol Eng 56(16):1730–1740CrossRefGoogle Scholar
  19. 19.
    Modanloo V, Doniavi A, Hasanzadeh R (2016) Application of multi criteria decision making methods to select sheet hydroforming process parameters. Decis Sci Lett 5(3):349–360CrossRefGoogle Scholar
  20. 20.
    Avalle M, Scattina A (2014) Mechanical properties and impact behavior of a microcellular structural foam. Latin Am J Solids Struct 11(2):200–222CrossRefGoogle Scholar
  21. 21.
    Barma P, Rhodes MB, Salovey R (1978) Mechanical properties of particulate-filled polyurethane foams. J Appl Phys 49(10):4985–4991CrossRefGoogle Scholar
  22. 22.
    Geissler B, Feuchter M, Laske S, Fasching M, Holzer C, Langecker GR (2016) Strategies to improve the mechanical properties of high-density polylactic acid foams. J Cell Plast 52(1):15–35CrossRefGoogle Scholar
  23. 23.
    Spina R (2017) Investigation of compression behavior of PE/EVA foam injection molded parts. In: AIP conference proceedings, vol 1896, no. 1, p. 060009. AIP PublishingGoogle Scholar
  24. 24.
    Shishavan SM, Azdast T, Ahmadi SR (2014) Investigation of the effect of nanoclay and processing parameters on the tensile strength and hardness of injection molded acrylonitrile butadiene styrene–organoclay nanocomposites. Mater Des 58:527–534CrossRefGoogle Scholar
  25. 25.
    Chan ML, Lau KT, Wong TT, Ho MP, Hui D (2011) Mechanism of reinforcement in a nanoclay/polymer composite. Compos B Eng 42(6):1708–1712CrossRefGoogle Scholar
  26. 26.
    Saaty RW (1987) The analytic hierarchy process-what it is and how it is used. Math Model 9(3–5):161–176CrossRefGoogle Scholar
  27. 27.
    Shimbo M, Higashitani I, Miyano Y (2007) Mechanism of strength improvement of foamed plastics having fine cell. J Cell Plast 43(2):157–167CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Mechanical Engineering DepartmentUrmia UniversityUrmiaIran
  2. 2.Dr. FoamVaughanCanada
  3. 3.Young Researchers and Elite Club, Urmia BranchIslamic Azad UniversityUrmiaIran

Personalised recommendations