Advertisement

Polymer Bulletin

, Volume 76, Issue 5, pp 2683–2710 | Cite as

Comparative studies of chemical crosslinking reactions and applications of bio-based hydrogels

  • Daniel Duquette
  • Marie-Josée DumontEmail author
Review
  • 172 Downloads

Abstract

Superabsorbent hydrogels are polymeric materials known for their ability to absorb and retain large amounts of water or aqueous solutions. Due to their unique properties, hydrogels have been useful in disposable diapers and other sanitary products, and in a range of other fields including agriculture and oral delivery of drugs, nutraceutical compounds or other bioactive molecules. The primary aim of this review is to provide an overview of several synthesis pathways for bio-based hydrogels by describing several chemical crosslinking methods and different ways of introducing new chemical functional groups to improve the absorbency of the polymers. In addition, bio-based superabsorbent hydrogels from proteins, carbohydrates and other biological molecules will be discussed, along with some of their applications in treating wastewater contaminated with heavy metals or as soil amendments in agriculture. Finally, some bio-based self-healing polymers and their respective applications will be covered in some details.

Notes

Acknowledgements

This work was funded by the Natural Sciences and Engineering Research Council of Canada (NSERC).

References

  1. 1.
    Ebara M, Kotsuchibashi Y, Narain R, Idota N, Kim Y-J, Hoffman JM, Uto K, Aoyagi T (2014) Smart biomaterials. Springer, New York CityCrossRefGoogle Scholar
  2. 2.
    Zohuriaan-Mehr MJ, Kabiri K (2008) Superabsorbent polymer materials: a review. Iran Polym J 17(6):451Google Scholar
  3. 3.
    Zheng Y, Wang A (2015) Superadsorbent with three-dimensional networks: from bulk hydrogel to granular hydrogel. Eur Polym J 72:661–686CrossRefGoogle Scholar
  4. 4.
    Rimdusit S, Somsaeng K, Kewsuwan P, Jubsilp C, Tiptipakorn S (2012) Comparison of gamma radiation crosslinking and chemical crosslinking on properties of methylcellulose hydrogel. Eng J 16(4):15–28CrossRefGoogle Scholar
  5. 5.
    Kamoun EA, Kenawy E-RS, Chen X (2017) A review on polymeric hydrogel membranes for wound dressing applications: PVA-based hydrogel dressings. J Adv Res 8(3):217–233.  https://doi.org/10.1016/j.jare.2017.01.005 CrossRefPubMedPubMedCentralGoogle Scholar
  6. 6.
    Gyles DA, Castro LD, Silva JOC, Ribeiro-Costa RM (2017) A review of the designs and prominent biomedical advances of natural and synthetic hydrogel formulations. Eur Polym J 88:373–392.  https://doi.org/10.1016/j.eurpolymj.2017.01.027 CrossRefGoogle Scholar
  7. 7.
    Tavakoli J, Tang Y (2017) Hydrogel based sensors for biomedical applications: an updated review. Polymers 9(8):364CrossRefPubMedCentralGoogle Scholar
  8. 8.
    Hoffman AS (2012) Hydrogels for biomedical applications. Adv Drug Deliv Rev 64:18–23CrossRefGoogle Scholar
  9. 9.
    Reddy N, Yang Y (2011) Potential of plant proteins for medical applications. Trends Biotechnol 29(10):490–498CrossRefPubMedGoogle Scholar
  10. 10.
    Van Vlierberghe S, Dubruel P, Schacht E (2011) Biopolymer-based hydrogels as scaffolds for tissue engineering applications: a review. Biomacromolecules 12(5):1387–1408CrossRefPubMedGoogle Scholar
  11. 11.
    Qiu Y, Park K (2001) Environment-sensitive hydrogels for drug delivery. Adv Drug Deliv Rev 53(3):321–339CrossRefPubMedGoogle Scholar
  12. 12.
    Liu LS, Kost J, Yan F, Spiro RC (2012) Hydrogels from biopolymer hybrid for biomedical, food, and functional food applications. Polymers 4(2):997–1011CrossRefGoogle Scholar
  13. 13.
    Caillard R, Remondetto GE, Mateescu MA, Subirade M (2008) Characterization of amino cross-linked soy protein hydrogels. J Food Sci 73(5):C283–C291.  https://doi.org/10.1111/j.1750-3841.2008.00780.x CrossRefPubMedGoogle Scholar
  14. 14.
    Hwang DC, Damodaran S (1996) Equilibrium swelling properties of a novel ethylenediaminetetraacetic dianhydride (EDTAD)-modified soy protein hydrogel. J Appl Polym Sci 62(8):1285–1293.  https://doi.org/10.1002/(Sici)1097-4628(19961121)62:8%3c1285:Aid-App19%3e3.0.Co;2-6 CrossRefGoogle Scholar
  15. 15.
    Chien KB, Chung EJ, Shah RN (2013) Investigation of soy protein hydrogels for biomedical applications: materials characterization, drug release, and biocompatibility. J Biomater Appl 28(7):1085–1096CrossRefPubMedGoogle Scholar
  16. 16.
    Hwang DC, Damodaran S (1997) Metal-chelating properties and biodegradability of an ethylenediaminetetraacetic acid dianhydride modified soy protein hydrogel. J Appl Polym Sci 64(5):891–901.  https://doi.org/10.1002/(Sici)1097-4628(19970502)64:5%3c891:Aid-App9%3e3.3.Co;2-5 CrossRefGoogle Scholar
  17. 17.
    Tian K, Shao ZZ, Chen X (2010) Natural electroactive hydrogel from soy protein isolation. Biomacromolecules 11(12):3638–3643.  https://doi.org/10.1021/bm101094g CrossRefPubMedGoogle Scholar
  18. 18.
    Maltais A, Remondetto GE, Subirade M (2009) Soy protein cold-set hydrogels as controlled delivery devices for nutraceutical compounds. Food Hydrocoll 23(7):1647–1653.  https://doi.org/10.1016/j.foodhyd.2008.12.006 CrossRefGoogle Scholar
  19. 19.
    Zhang BN, Cui YD, Yin GQ, Li XM (2012) Adsorption of copper (II) and lead (II) ions onto cottonseed protein-PAA hydrogel composite. Polym Plast Technol Eng 51(6):612–619.  https://doi.org/10.1080/03602559.2012.659311 CrossRefGoogle Scholar
  20. 20.
    Zhang BN, Cui YD, Yin GQ, Zhou HB (2011) Preparation of cottonseed protein-based superabsorbent hydrogel composite. Mechatron Mater Process I Pts 1–3 328–330:1589–1593.  https://doi.org/10.4028/www.scientific.net/AMR.328-330.1589 CrossRefGoogle Scholar
  21. 21.
    Zhang BN, Cui YD, Yin GQ, Li XM, Liao LW, Cai XB (2011) Synthesis and swelling properties of protein-poly(acrylic acid-co-acrylamide) superabsorbent composite. Polym Compos 32(5):683–691.  https://doi.org/10.1002/pc.21077 CrossRefGoogle Scholar
  22. 22.
    Rathna GVN, Damodaran S (2001) Swelling behavior of protein-based superabsorbent hydrogels treated with ethanol. J Appl Polym Sci 81(9):2190–2196.  https://doi.org/10.1002/App.1655.Abs CrossRefGoogle Scholar
  23. 23.
    Hwang DC, Damodaran S (1997) Synthesis and properties of fish protein-based hydrogel. J Am Oil Chem Soc 74(9):1165–1171.  https://doi.org/10.1007/s11746-997-0041-0 CrossRefGoogle Scholar
  24. 24.
    Rathna GVN, Damodaran S (2002) Effect of nonprotein polymers on water-uptake properties of fish protein-based hydrogel. J Appl Polym Sci 85(1):45–51.  https://doi.org/10.1002/app.10566 CrossRefGoogle Scholar
  25. 25.
    Marandi GB, Mahdavinia GR, Ghafary S (2011) Collagen-g-poly (Sodium Acrylate-co-Acrylamide)/sodium montmorillonite superabsorbent nanocomposites: synthesis and swelling behavior. J Polym Res 18(6):1487–1499CrossRefGoogle Scholar
  26. 26.
    Soleimani F, Sadeghi M, Shasevari H, Soleimani A, Sadeghi H (2013) A novel pH-responsive super absorbent hydrogel based on collagen for ephedrine controlled release. Asian J Chem 25(2):1029CrossRefGoogle Scholar
  27. 27.
    Sadeghi M, Hosseinzadeh H (2013) Synthesis and properties of collagen-g-poly (sodium acrylate-co-2-hydroxyethylacrylate) superabsorbent hydrogels. Braz J Chem Eng 30(2):379–389CrossRefGoogle Scholar
  28. 28.
    Pourjavadi A, Kurdtabar M, Mahdavinia GR, Hosseinzadeh H (2006) Synthesis and super-swelling behavior of a novel protein-based superabsorbent hydrogel. Polym Bull 57(6):813–824.  https://doi.org/10.1007/s00289-006-0649-5 CrossRefGoogle Scholar
  29. 29.
    Sadeghi M, Heidari B (2011) Crosslinked graft copolymer of methacrylic acid and gelatin as a novel hydrogel with pH-responsiveness properties. Materials 4(3):543–552CrossRefPubMedPubMedCentralGoogle Scholar
  30. 30.
    Liang HC, Chang WH, Liang HF, Lee MH, Sung HW (2004) Crosslinking structures of gelatin hydrogels crosslinked with genipin or a water-soluble carbodiimide. J Appl Polym Sci 91(6):4017–4026CrossRefGoogle Scholar
  31. 31.
    Serafim A, Tucureanu C, Petre D-G, Dragusin D-M, Salageanu A, Van Vlierberghe S, Dubruel P, Stancu I-C (2014) One-pot synthesis of superabsorbent hybrid hydrogels based on methacrylamide gelatin and polyacrylamide. Effortless control of hydrogel properties through composition design. New J Chem 38(7):3112–3126CrossRefGoogle Scholar
  32. 32.
    Hosseinzadeh H, Abbasian M, Hassanzadeh S (2014) Synthesis, characterization and swelling behavior investigation of gelatin-g-Poly (Acrylic Acid-co-Itaconic Acid). Iran Chem Commun 2:196–208Google Scholar
  33. 33.
    Gao LX, Chen JL, Han XW, Yan SX, Zhang Y, Zhang WQ, Gao ZW (2015) Electro-response characteristic of starch hydrogel crosslinked with Glutaraldehyde. J Biomater Sci Polym Ed 26(9):545–557.  https://doi.org/10.1080/09205063.2015.1037587 CrossRefPubMedGoogle Scholar
  34. 34.
    Athawale V, Lele V (1998) Graft copolymerization onto starch. II. Grafting of acrylic acid and preparation of it’s hydrogels. Carbohydr Polym 35(1–2):21–27CrossRefGoogle Scholar
  35. 35.
    Sorour M, El-Sayed M, Moneem NAE, Talaat HA, Shalaan H, Marsafy SE (2013) Characterization of hydrogel synthesized from natural polysaccharides blend grafted acrylamide using microwave (MW) and ultraviolet (UV) techniques. Starch-Stärke 65(1–2):172–178CrossRefGoogle Scholar
  36. 36.
    Soto D, Urdaneta J, Pernia K, León O, Muñoz-Bonilla A, Fernández-García M (2016) Itaconic acid grafted starch hydrogels as metal remover: capacity, selectivity and adsorption kinetics. J Polym Environ.  https://doi.org/10.1007/s10924-016-0780-9 CrossRefGoogle Scholar
  37. 37.
    Soto D, Urdaneta J, Pernía K, León O, Muñoz-Bonilla A, Fernandez-García M (2016) Removal of heavy metal ions in water by starch esters. Starch-Stärke 68(1–2):37–46CrossRefGoogle Scholar
  38. 38.
    Peng N, Wang YF, Ye QF, Liang L, An YX, Li QW, Chang CY (2016) Biocompatible cellulose-based superabsorbent hydrogels with antimicrobial activity. Carbohydr Polym 137:59–64.  https://doi.org/10.1016/j.carbpol.2015.10.057 CrossRefPubMedGoogle Scholar
  39. 39.
    Sannino A, Esposito A, Nicolais L, Del Nobile MA, Giovane A, Balestrieri C, Esposito R, Agresti M (2000) Cellulose-based hydrogels as body water retainers. J Mater Sci Mater Med 11(4):247–253.  https://doi.org/10.1023/A:1008980629714 CrossRefPubMedGoogle Scholar
  40. 40.
    Sannino A, Demitri C, Madaghiele M (2009) Biodegradable cellulose-based hydrogels: design and applications. Materials 2(2):353–373CrossRefPubMedCentralGoogle Scholar
  41. 41.
    Feng H, Li JA, Wang LJ (2010) Preparation of biodegradable flax shive cellulose-based superabsorbent polymer under microwave irradiation. BioResources 5(3):1484–1495Google Scholar
  42. 42.
    Pourjavadi A, Harzandi A, Hosseinzadeh H (2004) Modified carrageenan 3. Synthesis of a novel polysaccharide-based superabsorbent hydrogel via graft copolymerization of acrylic acid onto kappa-carrageenan in air. Eur Polym J 40(7):1363–1370CrossRefGoogle Scholar
  43. 43.
    Hosseinzadeh H, Pourjavadi A, Mahdavinia GR (2005) Modified carrageenan. 1. H-CarragPAM, a novel biopolymer-based superabsorbent hydrogel. J Bioact Compat Polym 20(5):475–490.  https://doi.org/10.1177/0883911505055164 CrossRefGoogle Scholar
  44. 44.
    Hu X, Gao C (2008) Photoinitiating polymerization to prepare biocompatible chitosan hydrogels. J Appl Polym Sci 110(2):1059–1067.  https://doi.org/10.1002/app.28704 CrossRefGoogle Scholar
  45. 45.
    Popa EG, Carvalho PP, Dias AF, Santos TC, Santo VE, Marques AP, Viegas CA, Dias IR, Gomes ME, Reis RL (2014) Evaluation of the in vitro and in vivo biocompatibility of carrageenan-based hydrogels. J Biomed Mater Res A 102(11):4087–4097CrossRefPubMedGoogle Scholar
  46. 46.
    Bergman SD, Wudl F (2008) Mendable polymers. J Mater Chem 18(1):41–62CrossRefGoogle Scholar
  47. 47.
    Altuna F, Antonacci J, Arenas G, Pettarin V, Hoppe C, Williams R (2016) Photothermal triggering of self-healing processes applied to the reparation of bio-based polymer networks. Mater Res Express 3(4):045003CrossRefGoogle Scholar
  48. 48.
    Wang H, Heilshorn SC (2015) Adaptable hydrogel networks with reversible linkages for tissue engineering. Adv Mater 27(25):3717–3736CrossRefPubMedPubMedCentralGoogle Scholar
  49. 49.
    Guo W, Qi X-J, Orbach R, Lu C-H, Freage L, Mironi-Harpaz I, Seliktar D, Yang H-H, Willner I (2014) Reversible Ag+-crosslinked DNA hydrogels. Chem Commun 50(31):4065–4068CrossRefGoogle Scholar
  50. 50.
    Spoljaric S, Salminen A, Luong ND, Seppälä J (2014) Stable, self-healing hydrogels from nanofibrillated cellulose, poly (vinyl alcohol) and borax via reversible crosslinking. Eur Polym J 56:105–117CrossRefGoogle Scholar
  51. 51.
    Ahmed EM (2015) Hydrogel: preparation, characterization, and applications: a review. J Adv Res 6(2):105–121CrossRefPubMedGoogle Scholar
  52. 52.
    Akhtar MF, Hanif M, Ranjha NM (2015) Methods of synthesis of hydrogels… A review. Saudi Pharm J 24(5):554–559Google Scholar
  53. 53.
    Maitra J, Shukla VK (2014) Cross-linking in hydrogels—a review. Am J Polym Sci 4(2):25–31Google Scholar
  54. 54.
    Lin H-R, Ling M-H, Lin Y-J (2009) High strength and low friction of a PAA-alginate-silica hydrogel as potential material for artificial soft tissues. J Biomater Sci Polym Ed 20(5–6):637–652.  https://doi.org/10.1163/156856209X426448 CrossRefPubMedGoogle Scholar
  55. 55.
    Zeiger E, Gollapudi B, Spencer P (2005) Genetic toxicity and carcinogenicity studies of glutaraldehyde—a review. Mutat Res/Rev Mutat Res 589(2):136–151CrossRefGoogle Scholar
  56. 56.
    Leung HW (2001) Ecotoxicology of glutaraldehyde: review of environmental fate and effects studies. Ecotoxicol Environ Saf 49(1):26–39.  https://doi.org/10.1006/eesa.2000.2031 CrossRefPubMedGoogle Scholar
  57. 57.
    Hennink WE, van Nostrum CF (2012) Novel crosslinking methods to design hydrogels. Adv Drug Deliv Rev 64:223–236.  https://doi.org/10.1016/j.addr.2012.09.009 CrossRefGoogle Scholar
  58. 58.
    Patil NS, Dordick JS, Rethwisch DG (1996) Macroporous poly(sucrose acrylate) hydrogel for controlled release of macromolecules. Biomaterials 17(24):2343–2350.  https://doi.org/10.1016/S0142-9612(96)00089-0 CrossRefPubMedGoogle Scholar
  59. 59.
    Patil NS, Li Y, Rethwisch DG, Dordick JS (1997) Sucrose diacrylate: a unique chemically and biologically degradable crosslinker for polymeric hydrogels. J Polym Sci A Polym Chem 35(11):2221–2229CrossRefGoogle Scholar
  60. 60.
    Li A, Wang A, Chen J (2004) Studies on poly (acrylic acid)/attapulgite superabsorbent composite. I. Synthesis and characterization. J Appl Polym Sci 92(3):1596–1603CrossRefGoogle Scholar
  61. 61.
    Mahdavinia G, Pourjavadi A, Hosseinzadeh H, Zohuriaan M (2004) Modified chitosan 4. Superabsorbent hydrogels from poly (acrylic acid-co-acrylamide) grafted chitosan with salt-and pH-responsiveness properties. Eur Polym J 40(7):1399–1407CrossRefGoogle Scholar
  62. 62.
    Willke T, Vorlop K-D (2001) Biotechnological production of itaconic acid. Appl Microbiol Biotechnol 56(3):289–295CrossRefPubMedGoogle Scholar
  63. 63.
    Scranton AB, Bowman CN, Meeting ACS, Peiffer RW, Science ACSDoPM, Engineering (1997) Photopolymerization: fundamentals and applications. vol 673. American Chemical Society,Google Scholar
  64. 64.
    Decker C (1987) UV-curing chemistry: past, present, and future. JCT J Coat Technol 59(751):97–106Google Scholar
  65. 65.
    Betancourt T, Pardo J, Soo K, Peppas NA (2010) Characterization of pH-responsive hydrogels of poly (itaconic acid-g-ethylene glycol) prepared by UV-initiated free radical polymerization as biomaterials for oral delivery of bioactive agents. J Biomed Mater Res A 93(1):175–188PubMedPubMedCentralGoogle Scholar
  66. 66.
    Gonen-Wadmany M, Oss-Ronen L, Seliktar D (2007) Protein-polymer conjugates for forming photopolymerizable biomimetic hydrogels for tissue engineering. Biomaterials 28(26):3876–3886.  https://doi.org/10.1016/j.biomaterials.2007.05.005 CrossRefPubMedGoogle Scholar
  67. 67.
    Yang Y, Zhang J, Liu Z, Lin Q, Liu X, Bao C, Wang Y, Zhu L (2016) Tissue-integratable and biocompatible photogelation by the imine crosslinking reaction. Adv Mater 28:2724–2730CrossRefPubMedGoogle Scholar
  68. 68.
    Nguyen KT, West JL (2002) Photopolymerizable hydrogels for tissue engineering applications. Biomaterials 23(22):4307–4314CrossRefPubMedGoogle Scholar
  69. 69.
    Fouassier J-P (1995) Photoinitiation, photopolymerization, and photocuring: fundamentals and applications. Hanser, MunichGoogle Scholar
  70. 70.
    Bryant SJ, Nuttelman CR, Anseth KS (2000) Cytocompatibility of UV and visible light photoinitiating systems on cultured NIH/3T3 fibroblasts in vitro. J Biomater Sci Polym Ed 11(5):439–457CrossRefPubMedGoogle Scholar
  71. 71.
    Williams CG, Malik AN, Kim TK, Manson PN, Elisseeff JH (2005) Variable cytocompatibility of six cell lines with photoinitiators used for polymerizing hydrogels and cell encapsulation. Biomaterials 26(11):1211–1218CrossRefPubMedGoogle Scholar
  72. 72.
    Makuuchi K (2010) Critical review of radiation processing of hydrogel and polysaccharide. Radiat Phys Chem 79(3):267–271CrossRefGoogle Scholar
  73. 73.
    Huang X, Zhang Y, Zhang X, Xu L, Chen X, Wei S (2013) Influence of radiation crosslinked carboxymethyl-chitosan/gelatin hydrogel on cutaneous wound healing. Mater Sci Eng, C 33(8):4816–4824CrossRefGoogle Scholar
  74. 74.
    Sokker H, El-Sawy NM, Hassan M, El-Anadouli BE (2011) Adsorption of crude oil from aqueous solution by hydrogel of chitosan based polyacrylamide prepared by radiation induced graft polymerization. J Hazard Mater 190(1):359–365CrossRefPubMedGoogle Scholar
  75. 75.
    Huacai G, Wan P, Dengke L (2006) Graft copolymerization of chitosan with acrylic acid under microwave irradiation and its water absorbency. Carbohydr Polym 66(3):372–378CrossRefGoogle Scholar
  76. 76.
    Singh V, Tiwari A, Tripathi DN, Sanghi R (2006) Microwave enhanced synthesis of chitosan-graft-polyacrylamide. Polymer 47(1):254–260CrossRefGoogle Scholar
  77. 77.
    Singh V, Tiwari A, Pandey S, Singh S (2007) Peroxydisulfate initiated synthesis of potato starch-graft-poly (acrylonitrile) under microwave irradiation. Express Polym Lett 1(1):51–58CrossRefGoogle Scholar
  78. 78.
    Cook JP, Goodall GW, Khutoryanskaya OV, Khutoryanskiy VV (2012) Microwave-assisted hydrogel synthesis: a new method for crosslinking polymers in aqueous solutions. Macromol Rapid Commun 33(4):332–336.  https://doi.org/10.1002/marc.201100742 CrossRefPubMedGoogle Scholar
  79. 79.
    Singh V, Tiwari A, Tripathi DN, Sanghi R (2004) Microwave assisted synthesis of guar-g-polyacrylamide. Carbohydr Polym 58(1):1–6CrossRefGoogle Scholar
  80. 80.
    Heck T, Faccio G, Richter M, Thony-Meyer L (2013) Enzyme-catalyzed protein crosslinking. Appl Microbiol Biotechnol 97(2):461–475.  https://doi.org/10.1007/s00253-012-4569-z CrossRefPubMedGoogle Scholar
  81. 81.
    Soares LHdB, Albuquerque PM, Assmann F, Ayub MAZ (2004) Physicochemical properties of three food proteins treated with transglutaminase. Ciência Rural 34(4):1219–1223CrossRefGoogle Scholar
  82. 82.
    Damodaran S, Agyare KK (2013) Effect of microbial transglutaminase treatment on thermal stability and pH-solubility of heat-shocked whey protein isolate. Food Hydrocoll 30(1):12–18CrossRefGoogle Scholar
  83. 83.
    Bagheri L, Yarmand M, Madadlou A, Mousavi ME (2014) Transglutaminase-induced or citric acid-mediated cross-linking of whey proteins to tune the characteristics of subsequently desolvated sub-micron and nano-scaled particles. J Microencapsul 31(7):636–643.  https://doi.org/10.3109/02652048.2014.911377 CrossRefPubMedGoogle Scholar
  84. 84.
    Farjami T, Madadlou A, Labbafi M (2015) Characteristics of the bulk hydrogels made of the citric acid cross-linked whey protein microgels. Food Hydrocoll 50:159–165.  https://doi.org/10.1016/j.foodhyd.2015.04.011 CrossRefGoogle Scholar
  85. 85.
    Chen TH, Embree HD, Brown EM, Taylor MM, Payne GF (2003) Enzyme-catalyzed gel formation of gelatin and chitosan: potential for in situ applications. Biomaterials 24(17):2831–2841.  https://doi.org/10.1016/S0142-9612(03)00096-6 CrossRefPubMedGoogle Scholar
  86. 86.
    Reddy N, Reddy R, Jiang Q (2015) Crosslinking biopolymers for biomedical applications. Trends Biotechnol 33(6):362–369CrossRefPubMedGoogle Scholar
  87. 87.
    Tessier FJ, Monnier VM, Sayre LM, Kornfield JA (2003) Triosidines: novel Maillard reaction products and cross-links from the reaction of triose sugars with lysine and arginine residues. Biochem J 369(3):705–719CrossRefPubMedPubMedCentralGoogle Scholar
  88. 88.
    Bidgoli H, Zamani A, Jeihanipour A, Taherzadeh MJ (2014) Preparation of carboxymethyl cellulose superabsorbents from waste textiles. Fibers Polym 15(3):431–436.  https://doi.org/10.1007/s12221-014-0431-5 CrossRefGoogle Scholar
  89. 89.
    Kong BJ, Kim A, Park SN (2016) Properties and in vitro drug release of hyaluronic acid-hydroxyethyl cellulose hydrogels for transdermal delivery of isoliquiritigenin. Carbohydr Polym 147:473–481.  https://doi.org/10.1016/j.carbpol.2016.04.021 CrossRefPubMedGoogle Scholar
  90. 90.
    Ciolacu DE, Suflet DM (2018) 11-cellulose-based hydrogels for medical/pharmaceutical applications. In: Popa V, Volf I (eds) Biomass as renewable raw material to obtain bioproducts of high-tech value. Elsevier, Amsterdam, pp 401–439.  https://doi.org/10.1016/B978-0-444-63774-1.00011-9 CrossRefGoogle Scholar
  91. 91.
    Lin L-X, Luo J-W, Yuan F, Zhang H-H, Ye C-Q, Zhang P, Sun Y-L (2017) In situ cross-linking carbodiimide-modified chitosan hydrogel for postoperative adhesion prevention in a rat model. Mater Sci Eng, C 81:380–385CrossRefGoogle Scholar
  92. 92.
    Chen Z, Du T, Tang X, Liu C, Li R, Xu C, Tian F, Du Z, Wu J (2016) Comparison of the properties of collagen–chitosan scaffolds after γ-ray irradiation and carbodiimide cross-linking. J Biomater Sci Polym Ed 27(10):937–953CrossRefPubMedGoogle Scholar
  93. 93.
    Wattie B, Dumont M-J, Lefsrud M (2018) Synthesis and properties of feather keratin-based superabsorbent hydrogels. Waste Biomass Valoriz 9(3):391–400CrossRefGoogle Scholar
  94. 94.
    Hashem A, Ahmad F, Fahad R (2008) Application of some starch hydrogels for the removal of mercury (II) ions from aqueous solutions. Adsorpt Sci Technol 26(8):563–579CrossRefGoogle Scholar
  95. 95.
    Astrini N, Anah L, Haryadi HR (2015) Adsorption of heavy metal ion from aqueous solution by using cellulose based hydrogel composite. In: Macromolecular symposia, vol 1. Wiley Online Library, pp 191–197Google Scholar
  96. 96.
    Chang CY, Duan B, Cai J, Zhang LN (2010) Superabsorbent hydrogels based on cellulose for smart swelling and controllable delivery. Eur Polym J 46(1):92–100.  https://doi.org/10.1016/j.eurpolymj.2009.04.033 CrossRefGoogle Scholar
  97. 97.
    Ratnayake WS, Jackson DS (2006) Gelatinization and solubility of corn starch during heating in excess water: new insights. J Agric Food Chem 54(10):3712–3716CrossRefPubMedGoogle Scholar
  98. 98.
    Rinaudo M (2006) Chitin and chitosan: properties and applications. Prog Polym Sci 31(7):603–632CrossRefGoogle Scholar
  99. 99.
    Berger J, Reist M, Mayer JM, Felt O, Peppas N, Gurny R (2004) Structure and interactions in covalently and ionically crosslinked chitosan hydrogels for biomedical applications. Eur J Pharm Biopharm 57(1):19–34CrossRefPubMedGoogle Scholar
  100. 100.
    Ma L, Gao C, Mao Z, Zhou J, Shen J, Hu X, Han C (2003) Collagen/chitosan porous scaffolds with improved biostability for skin tissue engineering. Biomaterials 24(26):4833–4841CrossRefPubMedGoogle Scholar
  101. 101.
    Drury JL, Mooney DJ (2003) Hydrogels for tissue engineering: scaffold design variables and applications. Biomaterials 24(24):4337–4351CrossRefPubMedGoogle Scholar
  102. 102.
    Zhang BN, Cui YD, Yin GQ, Li XM, You YW (2010) Synthesis and swelling properties of hydrolyzed cottonseed protein composite superabsorbent hydrogel. Int J Polym Mater 59(12):1018–1032.  https://doi.org/10.1080/00914031003760709 CrossRefGoogle Scholar
  103. 103.
    Lin HL, Sritham E, Lim S, Cui YD, Gunasekaran S (2010) Synthesis and characterization of PH-and salt-sensitive hydrogel based on chemically modified poultry feather protein isolate. J Appl Polym Sci 116(1):602–609.  https://doi.org/10.1002/app.31590 CrossRefGoogle Scholar
  104. 104.
    Pourjavadi A, Sadeghi M, Mahmodi Hashemi M, Hosseinzadeh H (2006) Synthesis and absorbency of gelatin-graft-poly (sodium acrylate-co-acrylamide) superabsorbent hydrogel with salt and pH-responsiveness properties. e-Polymers 6(1):728–742CrossRefGoogle Scholar
  105. 105.
    Sadeghi M, Hosseinzadeh H (2010) Synthesis and super-swelling behavior of a novel low salt-sensitive protein-based superabsorbent hydrogel: collagen-g-poly (AMPS). Turk J Chem 34(5):739–752Google Scholar
  106. 106.
    Lanthong P, Nuisin R, Kiatkamjornwong S (2006) Graft copolymerization, characterization, and degradation of cassava starch-g-acrylamide/itaconic acid superabsorbents. Carbohydr Polym 66(2):229–245CrossRefGoogle Scholar
  107. 107.
    Abdel-Halim ES, Al-Deyab SS (2014) Preparation of poly(acrylic acid)/starch hydrogel and its application for cadmium ion removal from aqueous solutions. React Funct Polym 75:1–8.  https://doi.org/10.1016/j.reactfunctpolym.2013.12.003 CrossRefGoogle Scholar
  108. 108.
    Teli M, Waghmare NG (2009) Synthesis of superabsorbent from carbohydrate waste. Carbohydr Polym 78(3):492–496CrossRefGoogle Scholar
  109. 109.
    Ferfera-Harrar H, Aiouaz N, Dairi N (2015) Synthesis and properties of chitosan-graft polyacrylamide/gelatin superabsorbent composites for wastewater purification. Polymer 6:9Google Scholar
  110. 110.
    Shi W, Dumont M-J, Ly EB (2014) Synthesis and properties of canola protein-based superabsorbent hydrogels. Eur Polym J 54:172–180.  https://doi.org/10.1016/j.eurpolymj.2014.03.007 CrossRefGoogle Scholar
  111. 111.
    Gupta P, Vermani K, Garg S (2002) Hydrogels: from controlled release to pH-responsive drug delivery. Drug Discov Today 7(10):569–579CrossRefPubMedGoogle Scholar
  112. 112.
    Lim DW, Whang HS, Yoon KJ, Ko SW (2001) Synthesis and absorbency of a superabsorbent from sodium starch sulfate-g-polyacrylonitrile. J Appl Polym Sci 79(8):1423–1430CrossRefGoogle Scholar
  113. 113.
    Barbucci R, Magnani A, Consumi M (2000) Swelling behavior of carboxymethylcellulose hydrogels in relation to cross-linking, pH, and charge density. Macromolecules 33(20):7475–7480CrossRefGoogle Scholar
  114. 114.
    Wu J, Muir AD (2008) Comparative structural, emulsifying, and biological properties of 2 major canola proteins, cruciferin and napin. J Food Sci 73(3):C210–C216.  https://doi.org/10.1111/j.1750-3841.2008.00675.x CrossRefPubMedGoogle Scholar
  115. 115.
    Hemvichian K, Chanthawong A, Suwanmala P (2014) Synthesis and characterization of superabsorbent polymer prepared by radiation-induced graft copolymerization of acrylamide onto carboxymethyl cellulose for controlled release of agrochemicals. Radiat Phys Chem 103:167–171CrossRefGoogle Scholar
  116. 116.
    Utech S, Boccaccini AR (2016) A review of hydrogel-based composites for biomedical applications: enhancement of hydrogel properties by addition of rigid inorganic fillers. J Mater Sci 51(1):271–310CrossRefGoogle Scholar
  117. 117.
    Pourjavadi A, Ayyari M, Amini-Fazl MS (2008) Taguchi optimized synthesis of collagen-g-poly(acrylic acid)/kaolin composite superabsorbent hydrogel. Eur Polym J 44(4):1209–1216.  https://doi.org/10.1016/j.eurpolymj.2008.01.032 CrossRefGoogle Scholar
  118. 118.
    Pourjavadi A, Hosseinzadeh H, Sadeghi M (2007) Synthesis, characterization and swelling behavior of gelatin-g-poly (sodium acrylate)/kaolin superabsorbent hydrogel composites. J Compos Mater 41(17):2057–2069CrossRefGoogle Scholar
  119. 119.
    Aalaie J, Vasheghani-Farahani E, Rahmatpour A, Semsarzadeh MA (2008) Effect of montmorillonite on gelation and swelling behavior of sulfonated polyacrylamide nanocomposite hydrogels in electrolyte solutions. Eur Polym J 44(7):2024–2031CrossRefGoogle Scholar
  120. 120.
    Volesky B (2001) Detoxification of metal-bearing effluents: biosorption for the next century. Hydrometallurgy 59(2):203–216CrossRefGoogle Scholar
  121. 121.
    Güçlü G, Keleş S, Güçlü K (2006) Removal of Cu2+ ions from aqueous solutions by starch-graft-acrylic acid hydrogels. Polym Plast Technol Eng 45(1):55–59CrossRefGoogle Scholar
  122. 122.
    McSweeny JD, Rowell RM, Min S-H (2006) Effect of citric acid modification of aspen wood on sorption of copper ion. J Nat Fibers 3(1):43–58CrossRefGoogle Scholar
  123. 123.
    Vieira RH, Volesky B (2000) Biosorption: a solution to pollution? Int Microbiol 3(1):17–24PubMedGoogle Scholar
  124. 124.
    Pal S, Mal D, Singh R (2005) Cationic starch: an effective flocculating agent. Carbohydr Polym 59(4):417–423CrossRefGoogle Scholar
  125. 125.
    Ngah WW, Teong L, Hanafiah M (2011) Adsorption of dyes and heavy metal ions by chitosan composites: a review. Carbohydr Polym 83(4):1446–1456CrossRefGoogle Scholar
  126. 126.
    Khan M, Lo IM (2016) A holistic review of hydrogel applications in the adsorptive removal of aqueous pollutants: recent progress, challenges, and perspectives. Water Res 106:259–271CrossRefPubMedGoogle Scholar
  127. 127.
    Güçlü G, Al E, Emik S, İyim TB, Özgümüş S, Özyürek M (2010) Removal of Cu2+ and Pb2+ ions from aqueous solutions by starch-graft-acrylic acid/montmorillonite superabsorbent nanocomposite hydrogels. Polym Bull 65(4):333–346CrossRefGoogle Scholar
  128. 128.
    Kurdtabar M, Kermani ZP, Marandi GB (2015) Synthesis and characterization of collagen-based hydrogel nanocomposites for adsorption of Cd2+, Pb2+, methylene green and crystal violet. Iran Polym J 24(9):791–803CrossRefGoogle Scholar
  129. 129.
    Yu C, Wang F, Zhang C, Fu S, Lucia LA (2016) The synthesis and absorption dynamics of a lignin-based hydrogel for remediation of cationic dye-contaminated effluent. React Funct Polym 106:137–142CrossRefGoogle Scholar
  130. 130.
    Li D, Li Q, Mao D, Bai N, Dong H (2017) A versatile bio-based material for efficiently removing toxic dyes, heavy metal ions and emulsified oil droplets from water simultaneously. Bioresour Technol 245:649–655.  https://doi.org/10.1016/j.biortech.2017.09.016 CrossRefPubMedGoogle Scholar
  131. 131.
    Chen P, Liu X, Jin R, Nie W, Zhou Y (2017) Dye adsorption and photo-induced recycling of hydroxypropyl cellulose/molybdenum disulfide composite hydrogels. Carbohydr Polym 167:36–43.  https://doi.org/10.1016/j.carbpol.2017.02.094 CrossRefPubMedGoogle Scholar
  132. 132.
    Cannazza G, Cataldo A, De Benedetto E, Demitri C, Madaghiele M, Sannino A (2014) Experimental assessment of the use of a novel superabsorbent polymer (SAP) for the optimization of water consumption in agricultural irrigation process. Water 6(7):2056–2069CrossRefGoogle Scholar
  133. 133.
    Ibrahim SM, El Salmawi KM, Zahran A (2007) Synthesis of crosslinked superabsorbent carboxymethyl cellulose/acrylamide hydrogels through electron-beam irradiation. J Appl Polym Sci 104(3):2003–2008CrossRefGoogle Scholar
  134. 134.
    Demitri C, Del Sole R, Scalera F, Sannino A, Vasapollo G, Maffezzoli A, Ambrosio L, Nicolais L (2008) Novel superabsorbent cellulose-based hydrogels crosslinked with citric acid. J Appl Polym Sci 110(4):2453–2460.  https://doi.org/10.1002/app.28660 CrossRefGoogle Scholar
  135. 135.
    Wang L-F, Rhim J-W (2015) Preparation and application of agar/alginate/collagen ternary blend functional food packaging films. Int J Biol Macromol 80:460–468.  https://doi.org/10.1016/j.ijbiomac.2015.07.007 CrossRefPubMedGoogle Scholar
  136. 136.
    Oun AA, Rhim J-W (2017) Carrageenan-based hydrogels and films: effect of ZnO and CuO nanoparticles on the physical, mechanical, and antimicrobial properties. Food Hydrocoll 67:45–53.  https://doi.org/10.1016/j.foodhyd.2016.12.040 CrossRefGoogle Scholar
  137. 137.
    Aggarwal P, Dollimore D (1997) The combustion of starch, cellulose and cationically modified products of these compounds investigated using thermal analysis. Thermochim Acta 291(1–2):65–72CrossRefGoogle Scholar
  138. 138.
    Pereira VA, de Arruda INQ, Stefani R (2015) Active chitosan/PVA films with anthocyanins from Brassica oleraceae (Red Cabbage) as Time-temperature indicators for application in intelligent food packaging. Food Hydrocoll 43:180–188.  https://doi.org/10.1016/j.foodhyd.2014.05.014 CrossRefGoogle Scholar
  139. 139.
    Hou C, Duan Y, Zhang Q, Wang H, Li Y (2012) Bio-applicable and electroactive near-infrared laser-triggered self-healing hydrogels based on graphene networks. J Mater Chem 22(30):14991–14996CrossRefGoogle Scholar
  140. 140.
    Chen J, Ma X, Dong Q, Song D, Hargrove D, Vora SR, Ma AW, Lu X, Lei Y (2016) Self-healing of thermal-induced, biocompatible and biodegradable protein hydrogel. RSC Adv 6:56183–56192CrossRefGoogle Scholar
  141. 141.
    Li Q, Liu C, Wen J, Wu Y, Shan Y, Liao J (2017) The design, mechanism and biomedical application of self-healing hydrogels. Chin Chem Lett 28(9):1857–1874.  https://doi.org/10.1016/j.cclet.2017.05.007 CrossRefGoogle Scholar
  142. 142.
    Zhang Y, Tao L, Li S, Wei Y (2011) Synthesis of multiresponsive and dynamic chitosan-based hydrogels for controlled release of bioactive molecules. Biomacromolecules 12(8):2894–2901.  https://doi.org/10.1021/bm200423f CrossRefPubMedGoogle Scholar
  143. 143.
    Li Y, Wang X, Wei Y, Tao L (2017) Chitosan-based self-healing hydrogel for bioapplications. Chin Chem Lett 28(11):2053–2057.  https://doi.org/10.1016/j.cclet.2017.09.004 CrossRefGoogle Scholar
  144. 144.
    Xu C, Zhan W, Tang X, Mo F, Fu L, Lin B (2018) Self-healing chitosan/vanillin hydrogels based on Schiff-base bond/hydrogen bond hybrid linkages. Polym Test 66:155–163.  https://doi.org/10.1016/j.polymertesting.2018.01.016 CrossRefGoogle Scholar
  145. 145.
    Liu S, Kang M, Li K, Yao F, Oderinde O, Fu G, Xu L (2018) Polysaccharide-templated preparation of mechanically-tough, conductive and self-healing hydrogels. Chem Eng J 334:2222–2230.  https://doi.org/10.1016/j.cej.2017.11.103 CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Department of Bioresource EngineeringMcGill UniversitySte-Anne-de-BellevueCanada

Personalised recommendations