Polymer Bulletin

, Volume 76, Issue 5, pp 2519–2536 | Cite as

Controlled release study of phenol formaldehyde based microcapsules containing various loading percentage of core cypermethrin at different agitation rates

  • Pravin S. Karandikar
  • Jamatsing D. Rajput
  • Suresh D. Bagul
  • Vikas V. Gite
  • Ratnamala S. BendreEmail author
Original Paper


Cypermethrin is a synthetic pyrethroid that acts as a neurotoxin and is used on large scale in both agricultural and domestic purposes. It is easily degraded on soil and plants but can be effective for weeks when applied to indoor inert surfaces. Sometimes it develops tingling, burning, dizziness, and itching to the operator which is why there is a need to develop a safe and effective formulation, which can release cypermethrin under controlled conditions. In this communication, we report a successful encapsulation of cypermethrin within shell of phenol formaldehyde (PF). A series of PF microcapsules have been prepared at various loading percentage and varying agitation rates by in situ polymerization. The formulation consists of mainly two parts, namely emulsification of the oil and wall formation. The morphology of formulated microcapsules was confirmed initially by observing under optical microscope and further with FESEM, which indicated spherical shape, smooth surface, and rigid nature to the microcapsules. The microcapsules were characterized by FTIR, TGA, and particle size analyzer. Release rate of cypermethrin from polymeric microcapsules was calculated by UV spectrophotometer and also by a simple gravimetric method. The stable, safe, and controlled release formulation of easily degradable, highly burning and etching cypermethrin is the success of our present work.

Graphical abstract


Cypermethrin Microcapsule In situ condensation polymerization Phenol–formaldehyde Morphology Controlled release Microencapsulation efficiency 



RSB thanks to UGC, New Delhi, for SAP (DSA-I) for providing funding for characterizations, PSK thanks to Gharda Chemicals Ltd. for providing active ingredients (Cypermethrin).


Funding was provided by Research Grants Council, University Grants Commission (Grant No. F-4-6/2015/DSA-I (SAP-II), dated 09/02/2015).

Supplementary material

289_2018_2508_MOESM1_ESM.docx (166 kb)
Supplementary material 1 (DOCX 165 kb)


  1. 1.
    Tyler CR, Beresford N, Van Der Woning M, Sumpter JP, Tchorpe K (2000) Metabolism and environmental degradation of pyrethroid insecticides produce compounds with endocrine activities. Environ Toxicol Chem 19(4):801–809CrossRefGoogle Scholar
  2. 2.
    Woodburn A (1995) Cotton: the crop and its agrochemicals market. Allan Woodburn Association Ltd, Edinburgh, p 231Google Scholar
  3. 3.
    Cox C (1996) Masculinity at risk. J Pestic Reform 16:2–7Google Scholar
  4. 4.
    Parajuli S (2006) Cypermethrin poisoning and anti-cholinergic medication-a case report. Internet J Med Update 1(2):42Google Scholar
  5. 5.
    Hayes WJ (1991) Dosage and other factors influencing toxicity. Handb Pestic Toxicol Gen Princ 1:39–105Google Scholar
  6. 6.
    Meister RT (ed) (1993) Farm chemicals handbook ‘93. Meister Publishing Company, WilloughbyGoogle Scholar
  7. 7.
    Burnett CA, Lushniak BD, McCarthy W, Kaufman J (1998) Occupational dermatitis causing days away from work in US private industry, 1993. Am J Ind Med 34(6):568–573CrossRefGoogle Scholar
  8. 8.
    Rochmadi AP, Hasokowati W (2010) Mechanism of microencapsulation with urea-formaldehyde polymer. Am J Appl Sci 7(6):739–745CrossRefGoogle Scholar
  9. 9.
    Bagle AV, Jadhav RS, Gite VV, Hundiwale DG, Mahulikar PP (2013) Controlled release study of phenol formaldehyde microcapsules containing neem oil as an insecticide. Int J Polym Mater Polym Biomater 62(8):421–425CrossRefGoogle Scholar
  10. 10.
    Kim KK, Pack DW (2006) Microspheres for drug delivery. In: Ferrari M, Lee AP, Lee LJ (eds) BioMEMS and biomedical nanotechnology. Springer, Boston, pp 19–50CrossRefGoogle Scholar
  11. 11.
    El-Houssiny AS, Ward AA, Mostafa DM, Abd-El-Messieh SL, Abdel-Nour AL, Darwish MM, Khalil WA (2015) A newly developed transdermal treatment of osteoarthritis using gelatin nanoparticles. J Biol Pharm Res 6:264–272Google Scholar
  12. 12.
    Hedaoo RK, Mahulikar PP, Chaudhari AB, Rajput SD, Gite VV (2014) Fabrication of core–shell novel polyurea microcapsules using isophorone diisocyanate (IPDI) trimer for release system. Int J Polym Mater Polym Biomater 63(7):352–360CrossRefGoogle Scholar
  13. 13.
    Hedaoo RK, Mahulikar PP, Gite VV (2013) Synthesis and characterization of resorcinol-based cross linked phenol formaldehyde microcapsules for encapsulation of pendimethalin. Polym Plast Technol Eng 52(3):243–249CrossRefGoogle Scholar
  14. 14.
    Jyothi NVN, Prasanna PM, Sakarkar SN, Prabha KS, Ramaiah PS, Srawan GY (2010) Microencapsulation techniques, factors influencing encapsulation efficiency. J Microencapsul 27(3):187–197CrossRefGoogle Scholar
  15. 15.
    Silva PTD, Fries LLM, Menezes CRD, Holkem AT, Schwan CL, Wigmann ÉF, Bastos EF, Silva CDBD (2014) Microencapsulation: concepts, mechanisms, methods and some applications in food technology. Ciência Rural 44(7):1304–1311CrossRefGoogle Scholar
  16. 16.
    Cheng SY, Yuen MCW, Kan CW, Cheuk KKL, Chui CH, Lam KH (2009) Cosmetic textiles with biological benefits: gelatin microcapsules containing vitamin C. Int J Mol Med 24(4):411–419Google Scholar
  17. 17.
    Lu S, Xing J, Zhang Z, Jia G (2011) Preparation and characterization of polyurea/polyurethane double-shell microcapsules containing butyl stearate through interfacial polymerization. J Appl Polym Sci 121(6):3377–3383CrossRefGoogle Scholar
  18. 18.
    Alič B, Šebenik U, Krajnc M (2012) Microencapsulation of butyl stearate with melamineformaldehyde resin: effect of decreasing the pH value on the composition and thermal stability of microcapsules. Expr Polym Lett 6(10):826CrossRefGoogle Scholar
  19. 19.
    Brown EN, Kessler MR, Sottos NR, White SR (2003) In situ poly (urea-formaldehyde) microencapsulation of dicyclopentadiene. J Microencapsul 20(6):719–730CrossRefGoogle Scholar
  20. 20.
    Noh HH, Lee JK (2013) Microencapsulation of self-healing agents containing a fluorescent dye. Express Polym Lett 7:88–94CrossRefGoogle Scholar
  21. 21.
    Hedaoo RK, Gite VV (2014) Renewable resource-based polymeric microencapsulation of natural pesticide and its release study: an alternative green approach. Rsc Adv 4(36):18637–18644CrossRefGoogle Scholar
  22. 22.
    Jadhav RS, Hundiwale DG, Mahulikar PP (2011) Synthesis and characterization of phenol–formaldehyde microcapsules containing linseed oil and its use in epoxy for self-healing and anticorrosive coating. J Appl Polym Sci 119(5):2911–2916CrossRefGoogle Scholar
  23. 23.
    Xu Y, Chen WT, Fan TF, Wu XM, Gao HX (2015) Preparation and characterization of modified polylactic acid-co-polyethylene glycol-co-polylactic acid microcapsules enclosing cypermethrin. In: Advanced materials research, vol 1088. Trans Tech Publications, Zürich, pp 449–454Google Scholar
  24. 24.
    Lee EM, Kim HI, Park SM (2007) Effects of protective colloids on the formation of polyurea microcapsules. Text Colo Finish 19(5):30–36Google Scholar
  25. 25.
    Poljansek I, Krajnc M (2005) Characterization of phenol-formaldehyde prepolymer resins by in line FT-IR spectroscopy. Acta Chim Slov 52(3):238Google Scholar
  26. 26.
    Armenta S, Quintás G, Garrigues S, de la Guardia M (2005) A validated and fast procedure for FTIR determination of cypermethrin and chlorpyrifos. Talanta 67(3):634–639CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  • Pravin S. Karandikar
    • 1
  • Jamatsing D. Rajput
    • 1
  • Suresh D. Bagul
    • 1
  • Vikas V. Gite
    • 2
  • Ratnamala S. Bendre
    • 1
    Email author
  1. 1.Department of Pesticide and Agrochemicals, School of Chemical SciencesNorth Maharashtra UniversityJalgaonIndia
  2. 2.Department of Polymer Chemistry, School of Chemical SciencesNorth Maharashtra UniversityJalgaonIndia

Personalised recommendations