Advertisement

Polymer Bulletin

, Volume 76, Issue 5, pp 2387–2398 | Cite as

Effect of solid-state polycondensation on crystalline structure and mechanical properties of recycled polyethylene-terephthalate

  • Bela Molnar
  • Ferenc RonkayEmail author
Original Paper

Abstract

Solid-state polycondensation process of recycled polyethylene-terephthalate and its effect on crystalline structure and mechanical properties were investigated. A three-phase morphological model was applied for the evaluation of crystalline structure, while mechanical properties were determined by dynamic mechanical analysis. The effect of solid-state polycondensation process on morphology was investigated and described in detail. A new method was used to analyze the effect of solid-state polycondensation process on mechanical properties. Relationship was found between evolved crystalline structure and storage modulus of samples.

Keywords

Recycled polyethylene-terephthalate Solid-state polycondensation Morphology Mechanical properties 

Notes

Acknowledgements

This research was realized in the frames of TÁMOP 4.2.4. A/1-11-1-2012-0001: “National Excellence Program—Elaborating and operating an inland student and researcher personal support system.” The project was subsidized by the European Union and co-financed by the European Social Fund. The infrastructure of the research project was supported by the Hungarian Scientific Research Fund (OTKA K109224).

References

  1. 1.
    Welle F (2011) Twenty years of PET bottle to bottle recycling—an overview. Resour Conserv Recy 55:865–875.  https://doi.org/10.1016/j.resconrec.2011.04.009 CrossRefGoogle Scholar
  2. 2.
    Welle F (2014) Simulation of the decontamination efficiency of PET recycling processes based on solid-state polycondensation. Packag Technol Sci 27:141–148.  https://doi.org/10.1002/pts.2013 CrossRefGoogle Scholar
  3. 3.
    Issam AM, Hena S, Khizrien AKN (2012) A new unsaturated poly(ester-urethane) based on terephthalic acid derived from polyethylene terephthalate (PET) of waste bottles. J Polym Envirom 20:469–476.  https://doi.org/10.1007/s10924-011-0407-0 CrossRefGoogle Scholar
  4. 4.
    Ronkay F, Molnar B, Dogossy G (2017) The effect of mold temperature on chemical foaming of injection molded recycled polyethylene-terephthalate. Thermochim Acta 651:65–72.  https://doi.org/10.1016/j.tca.2017.02.013 CrossRefGoogle Scholar
  5. 5.
    Badia JD, Strömberg E, Karlsson S, Ribes-Greus A (2012) The role of crystalline, mobile amorphous rigid amorphous fractions in the performance of recycled poly (ethylene terephthalate) (PET). Polym Degrad Stabil 97:98–107.  https://doi.org/10.1016/j.polymdegradstab.2011.10.008 CrossRefGoogle Scholar
  6. 6.
    Kao CY, Cheng WH, Wan BZ (1998) Investigation of alkaline hydrolysis of polyethylene terephthalate by differential scanning calorimetry and thermogravimetric analysis. J Appl Polym Sci 70:1939–1945.  https://doi.org/10.1002/(SICI)1097-4628(19981205)70:10%3C1939::AID-APP8%3E3.0.CO;2-G CrossRefGoogle Scholar
  7. 7.
    Paci M, Mantia FPL (1999) Influence of small amounts of polyvinylchloride on the recycling of polyethyleneterephthalate. Polym Degrad Stabil 63:11–14.  https://doi.org/10.1016/S0141-3910(98)00053-6 CrossRefGoogle Scholar
  8. 8.
    Assadi R, Colin X, Verdu J (2004) Irreversible structural changes during PET recycling by extrusion. Polymer 45:4403–4412.  https://doi.org/10.1016/j.polymer.2004.04.029 CrossRefGoogle Scholar
  9. 9.
    Zhao HB, Wang XL, Guan Y, Wang XL, Chen L, Wang YZ (2015) Block self-cross-linkable poly(ethylene terephthalate) copolyester via solid-state polymerization: crystallization, cross-linking, and flame retardance. Polymer 70:68–76.  https://doi.org/10.1016/j.polymer.2015.06.012 CrossRefGoogle Scholar
  10. 10.
    Karayannidis GP, Psalida EA (2000) Chain extension of recycled poly(ethylene terephthalate) with 2,2′-(1,4-phenylene)bis(2-oxazoline). J Appl Polym Sci 77:2206–2211.  https://doi.org/10.1002/1097-4628(20000906)77:10%3C2206::AID-APP14%3E3.0.CO;2-D CrossRefGoogle Scholar
  11. 11.
    Raffa P, Coltelli MB, Savi S, Bianchi S, Castelvetro V (2012) Chain extension and branching of poly(ethylene terephthalate) (PET) with di-multifunctional epoxy or isocyanate additives: an experimental and modelling study. React Funct Polym 72:50–60.  https://doi.org/10.1016/j.reactfunctpolym.2011.10.007 CrossRefGoogle Scholar
  12. 12.
    Nascimento CR, Azuma C, Bretas R, Farah M, Dias ML (2010) Chain extension reaction in solid-state polymerization of recycled PET: the influence of 2,2′-bis-2-oxazoline and pyromellitic anhydride. J Appl Polym Sci 115:3177–3188.  https://doi.org/10.1002/app.31400 CrossRefGoogle Scholar
  13. 13.
    Rafler G, Reinisch G, Bonatz E, Versaumer H, Gajewski H, Sparing HD, Stein K, Mühlhaus C (1985) Kinetics of mass transfer in the melt polycondensation of poly(ethylene terephthalate). J Macromol Sci Chem 22:1413–1427.  https://doi.org/10.1080/00222338508063344 CrossRefGoogle Scholar
  14. 14.
    Cheong SI, Choi KY (1995) Melt polycondensation of poly(ethylene terephthalate) in a rotating disk reactor. J Appl Polym Sci 58:1473–1483.  https://doi.org/10.1002/app.1995.070580908 CrossRefGoogle Scholar
  15. 15.
    Zhong H, Xi Z, Liu T, Xu Z, Zhao L (2013) Integrated process of supercritical CO2-assisted melt polycondensation modification and foaming of poly(ethylene terephthalate). J Supercrit Fluids 74:70–79.  https://doi.org/10.1016/j.supflu.2012.11.019 CrossRefGoogle Scholar
  16. 16.
    Karayannidis GP, Kokkalas DE, Bikiaris DN (1993) Solid-state polycondensation of poly(ethylene terephthalate) recycled from postconsumer soft-drink bottles. I. J Appl Polym Sci 50:2135–2142.  https://doi.org/10.1002/app.1993.070501213 CrossRefGoogle Scholar
  17. 17.
    Zhao J, Xiao H, Qiu G, Zhang Y, Huang N, Tang Z (2005) Solid-state polycondensation of poly(ethylene terephthalate) modified with isophthalic acid: kinetics and simulation. Polymer 46:7309–7316.  https://doi.org/10.1016/j.polymer.2005.05.090 CrossRefGoogle Scholar
  18. 18.
    Zhi-Lian T, Gao Q, Nan-Xun H, Sironi C (1995) Solid-state polycondensation of poly(ethylene terephthalate): kinetics and mechanism. J Appl Polym Sci 57:473–485.  https://doi.org/10.1002/app.1995.070570409 CrossRefGoogle Scholar
  19. 19.
    Scheirs J, Long TA (2003) Modern polyesters: chemistry and technology of polyesters and copolyesters. Wiley, New Jersey.  https://doi.org/10.1002/0470090685 Google Scholar
  20. 20.
    Mallon F, Beers K, Ives A, Ray H (1998) The effect of the type of purge gas on the solid-state polymerization of polyethylene terephthalate. J Appl Polym Sci 69:1789–1791.  https://doi.org/10.1002/(SICI)1097-4628(19980829)69:9%3C1789::AID-APP13%3E3.0.CO;2-H CrossRefGoogle Scholar
  21. 21.
    Duh B (2006) Effects of crystallinity on solid-state polymerization of poly(ethylene terephthalate). J Appl Polym Sci 102:623–632.  https://doi.org/10.1002/app.24406 CrossRefGoogle Scholar
  22. 22.
    Wang XQ, Deng DC (2002) A comprehensive model for solid state polycondensation of poly(ethylene terephthalate): combining kinetics with crystallization and diffusion of acetaldehyde. J Appl Polym Sci 83:3133–3144.  https://doi.org/10.1002/app.10113 CrossRefGoogle Scholar
  23. 23.
    Bikiaris DN, Achillas DS, Giliopoulos DJ, Karayannidis GP (2006) Effect of activated carbon black nanoparticles on solid state polymerization of poly(ethylene terephthalate). Eur Polym J 42:3190–3201.  https://doi.org/10.1016/j.eurpolymj.2006.07.027 CrossRefGoogle Scholar
  24. 24.
    Yu H, Han K, Yu M (2004) The rate acceleration in solid state polycondensation of PET by nanomaterials. J Appl Polym Sci 94:971–976.  https://doi.org/10.1002/app.20888 CrossRefGoogle Scholar
  25. 25.
    Achilias DS, Karandrea E, Triantafyllidis KS, Ladavos A, Bikiaris DN (2015) Effect of organoclays type on the solid-state polymerization (SSP) of poly(ethylene terephthalate): experimental and modeling. Eur Polym J 63:156–167.  https://doi.org/10.1016/j.eurpolymj.2014.12.027 CrossRefGoogle Scholar
  26. 26.
    Duh B (2002) Effect of antimony catalyst on solid-state polycondensation of poly(ethylene terephthalate). Polymer 43:3147–3154.  https://doi.org/10.1016/S0032-3861(02)00138-6 CrossRefGoogle Scholar
  27. 27.
    Mendes LC, Pereira PSC (2013) Solid state polymerization: its action on thermal and rheological properties of PET/PC reactive blends. Polimeros 23:298–304.  https://doi.org/10.1590/0104-1428.1518 CrossRefGoogle Scholar
  28. 28.
    Dini M, Carreau PJ, Kamal MR, Ton-That M-T, Esmaeili B (2014) Solid-state polymerization of poly(ethylene terephthalate): effect of organoclay concentration. Polym Eng Sci 54:2925–2934.  https://doi.org/10.1002/pen.23853 CrossRefGoogle Scholar
  29. 29.
    Cruz SA, Zanin M (2006) PET recycling: evaluation of the solid state polymerization process. J Appl Polym Sci 99:2117–2123.  https://doi.org/10.1002/app.22526 CrossRefGoogle Scholar
  30. 30.
    Torres N, Robin JJ, Boutevin B (2000) Study of thermal and mechanical properties of virgin and recycled poly(ethylene terephthalate) before and after injection molding. Eur Polym J 36:2075–2080.  https://doi.org/10.1016/S0014-3057(99)00301-8 CrossRefGoogle Scholar
  31. 31.
    Karayannidis GP, Kokkalas DE, Bikiaris DN (1995) Solid-State polycondensation of poly(ethylene terephthalate) recycled from postconsumer soft-drink bottles. II. J Appl Polym Sci 56:405–410.  https://doi.org/10.1002/app.1995.070560311 CrossRefGoogle Scholar
  32. 32.
    Agrawal AK, Mhaisgawali VT (2006) Post-extrusion solid-state polymerization of fully drawn polyester yarns. J Appl Polym Sci 102:5113–5122.  https://doi.org/10.1002/app.24436 CrossRefGoogle Scholar
  33. 33.
    Wunderlich B (2003) Reversible crystallization and the rigid-amorphous phase in semicrystalline macromolecules. Prog Polym Sci 28:383–450.  https://doi.org/10.1016/s0079-6700(02)00085-0 CrossRefGoogle Scholar
  34. 34.
    Rastogi R, Vellinga WP, Rastogi S, Schick C, Meijer HEH (2004) The three-phase structure and mechanical properties of poly(ethylene terephthalate). J Polym Sci Polym Phys 42:2092–2106.  https://doi.org/10.1002/polb.20096 CrossRefGoogle Scholar
  35. 35.
    Molnar B, Ronkay F (2017) Time dependence of morphology and mechanical properties of injection moulded recycled poly(ethylene-terephthalate). Int Polym Process 32:203–208.  https://doi.org/10.3139/217.3307 CrossRefGoogle Scholar
  36. 36.
    Ehrenstein GW, Riedel G, Trawiel P (2004) Thermal analysis of plastics. Hanser Publisher, Munich.  https://doi.org/10.3139/9783446434141 CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Department of Polymer Engineering, Faculty of Mechanical EngineeringBudapest University of Technology and EconomicsBudapestHungary

Personalised recommendations