Advertisement

Polymer Bulletin

, Volume 76, Issue 6, pp 2835–2850 | Cite as

Effect of incompletely condensed tri-silanol-phenyl-POSS on the thermal stability of silicone rubber

  • Xiaoxiao Gao
  • Hanchao Liu
  • Haitao Wei
  • Jing Zheng
  • Guangsu HuangEmail author
Original Paper
  • 59 Downloads

Abstract

In most cases, incompletely condensed tri-silanol-phenyl-polyhedral oligomeric silsesquioxane (SSOH) was used as an intermediate to synthesize the polyhedral oligomeric silsesquioxane (POSS) with special structure. In this paper, SSOH was well synthesized and then immediately incorporated into hydroxyl-terminated polydimethylsiloxane (PDMS) as a co-cross-linking agent to prepare room-temperature-vulcanized (RTV) silicone rubber (SSOH-PDMS). Thermogravimetric analysis (TGA) results showed that the chemical incorporation of POSS into PDMS networks exerted significant enhancement of thermal stability for the rubber nanocomposites. For SSOH-PDMS with 5 wt% SSOH, the degradation temperature of 5% weight loss were delayed from 364.78 to 379.50 °C, while the temperature for 30% weight loss were increased by 47.4 °C. By monitoring the degradation behavior by TGA coupled with Fourier transform infrared spectroscopy (FTIR), the degradation mechanism of the modified RTV silicone rubber containing different concentration of the cross-linker SSOH has been investigated. The results showed that the SSOH greatly influenced the degradation mechanism of PDMS rubber in two ways: ① The reaction with the silanols in PDMS can diminish the degradation initiated by hydroxyl-terminal during the first degradation stage; ② the nanoreinforcement effect of POSS on the PDMS can delay the temperatures of the second thermal degradation stage.

Keywords

Incompletely condensed POSS Silicone rubber nanocomposites Thermal stability Thermal degradation mechanism 

Notes

Acknowledgements

The authors acknowledge the support from funding provided by the National Natural Science Foundation of China (Grant No. 51073097).

References

  1. 1.
    Srividhya M, Madhavan K, Reddy BSR (2006) Synthesis of novel soluble poly(imide-siloxane)s via hydrosilylation: characterization and structure property behaviour. Eur Polym J 42:2743CrossRefGoogle Scholar
  2. 2.
    Liu YR, Huang YD, Liu L (2007) Influences of monoSilanolIsobutyl-POSS on thermal stability of polymethylsilxoane. J Mater Sci 42:5544CrossRefGoogle Scholar
  3. 3.
    Shi Y et al (2013) Nano-calcium carbonate (CaCO3)/polystyrene (PS) core–shell nanoparticle: it’s effect on physical and mechanical properties of high impact polystyrene (HIPS). J Polym Res 20:245CrossRefGoogle Scholar
  4. 4.
    Sim LC et al (2005) Thermal characterization of Al2O3 and ZnO reinforced silicone rubber as thermal pads for heat dissipation purposes. Thermochim Acta 430:155CrossRefGoogle Scholar
  5. 5.
    Dickstein WH, Siemens RL, Hadziioannou E (1990) Dynamic mechanical and thermogravimetric analyses of the effect of ferric oxide on the thermaloxidative degradation of silicone rubber. Thermochim Acta 166:137CrossRefGoogle Scholar
  6. 6.
    Osman MA et al (2002) Reinforcement of poly(dimethylsiloxane) networks by montmorillonite platelets. J Appl Polym Sci 83:2175CrossRefGoogle Scholar
  7. 7.
    Pan G, Mark JE, Schaefer DW (2003) Synthesis and characterization of fillers of controlled structure based on polyhedral oligomeric silsesquioxane cages and their use in reinforcing siloxane elastomers. J Polym Sci Part B Polym Phys 41:3314CrossRefGoogle Scholar
  8. 8.
    Pyun J, Matyjaszewski K (2000) The synthesis of hybrid polymers using atom transfer radical polymerization: homopolymers and block copolymers from polyhedral oligomeric silsesquioxane monomers. Macromolecules 33:217CrossRefGoogle Scholar
  9. 9.
    Mather PT et al (1999) Mechanical relaxation and microstructure of poly(norbornyl-POSS) copolymers. Macromolecules 32:1194CrossRefGoogle Scholar
  10. 10.
    Zheng L, Farris RJ, Coughlin EB (2001) Novel polyolefin nanocomposites:  synthesis and characterizations of metallocene-catalyzed polyolefin polyhedral oligomeric silsesquioxane copolymers. Macromolecules 34:8034CrossRefGoogle Scholar
  11. 11.
    Lee A, Lichtenhan JD (1998) Viscoelastic responses of polyhedral oligosilsesquioxane reinforced epoxy systems. Macromolecules 31:4970CrossRefGoogle Scholar
  12. 12.
    Liu L et al (2007) Combustion and thermal properties of OctaTMA-POSS/PS composites. J Mater Sci 42:4325CrossRefGoogle Scholar
  13. 13.
    Packirisamy S, Schwam D, Litt MH (1995) Atomic oxygen resistant coatings for low earth orbit space structures. J Mater Sci 30:308CrossRefGoogle Scholar
  14. 14.
    Lichtenhan JD, Otonari YA, Carr MJ (1995) Linear hybrid polymer building blocks: methacrylate-functionalized polyhedral oligomeric silsesquioxane monomers and polymers. Macromolecules 28:8435CrossRefGoogle Scholar
  15. 15.
    Haddad TS, Lichtenhan JD (1996) Hybrid organic–inorganic thermoplastics:  styryl-based polyhedral oligomeric silsesquioxane polymers. Macromolecules 29:7302CrossRefGoogle Scholar
  16. 16.
    Tsuchida A et al (1997) Ethene and propene copolymers containing silsesquioxane side groups. Macromolecules 30:2818CrossRefGoogle Scholar
  17. 17.
    Fina A et al (2005) Polypropylene–polyhedral oligomeric silsesquioxanes (POSS) nanocomposites. Polymer 46:7855CrossRefGoogle Scholar
  18. 18.
    Xu H et al (2002) Preparations, thermal properties, and T g increase mechanism of inorganic/organic hybrid polymers based on polyhedral oligomeric silsesquioxanes. Macromolecules 35:8788CrossRefGoogle Scholar
  19. 19.
    Zheng L, Farris RJ, Coughlin EB (2001) Novel polyolefin nanocomposites:  synthesis and characterizations of metallocene-catalyzed polyolefin polyhedral oligomeric silsesquioxane copolymers. Macromolecules 34:8034CrossRefGoogle Scholar
  20. 20.
    Xu H et al (2005) Preparation, thermal properties, and T g increase mechanism of poly(acetoxystyrene-co-octavinyl-polyhedral oligomeric silsesquioxane) hybrid nanocomposites. Macromolecules 38:10455CrossRefGoogle Scholar
  21. 21.
    Xu H et al (2007) Preparation, T g improvement, and thermal stability enhancement mechanism of soluble poly(methyl methacrylate) nanocomposites by incorporating octavinyl polyhedral oligomeric silsesquioxanes. J Polym Sci Part A Polym Chem 45:5308CrossRefGoogle Scholar
  22. 22.
    Markovic E et al (2007) Poly(ethylene glycol)-octafunctionalized polyhedral oligomeric silsesquioxane:  synthesis and thermal analysis. Macromolecules 40:2694CrossRefGoogle Scholar
  23. 23.
    Bolln C et al (1997) Thermal properties of the homologous series of 8-fold alkyl-substituted octasilsesquioxanes. Chem Mater 9:1475CrossRefGoogle Scholar
  24. 24.
    Yang B-H et al (2009) Design and architecture of low-dielectric-constant organic–inorganic hybrids from octahydridosilsesquioxanes. J Mater Chem 19:9038CrossRefGoogle Scholar
  25. 25.
    Su H-W, Chen W-C (2009) Preparation of nanoporous poly(methyl silsesquioxane) films using core–shell silsesquioxane as porogen. Mater Chem Phys 114:736CrossRefGoogle Scholar
  26. 26.
    Kuo S-W, Chang F-C (2011) POSS related polymer nanocomposites. Prog Polym Sci 36:1649CrossRefGoogle Scholar
  27. 27.
    Longhi M et al (2016) Influence of the functionality of polyhedral oligomeric silsesquioxane–POSS containing glycidyl groups on the dispersion and interaction with epoxy nanocomposites. Polym Compos.  https://doi.org/10.1002/pc.23991 Google Scholar
  28. 28.
    Fernández MD, Fernández MJ, Cobos M (2016) Effect of polyhedral oligomeric silsesquioxane (POSS) derivative on the morphology, thermal, mechanical and surface properties of poly(lactic acid)-based nanocomposites. J Mater Sci 51:3628CrossRefGoogle Scholar
  29. 29.
    Shi Y et al (2014) Synthesis and thermal properties of modified room temperature vulcanized (RTV) silicone rubber using polyhedral oligomeric silsesquioxane (POSS) as a cross linking agent. RSC Adv 4:41453CrossRefGoogle Scholar
  30. 30.
    Ni Y, Zheng S, Nie K (2004) Morphology and thermal properties of inorganic–organic hybrids involving epoxy resin and polyhedral oligomeric silsesquioxanes. Polymer 45:5557CrossRefGoogle Scholar
  31. 31.
    Teo JKH et al (2007) Epoxy/polyhedral oligomeric silsesquioxane (POSS) hybrid networks cured with an anhydride: cure kinetics and thermal properties. Polymer 48:5671CrossRefGoogle Scholar
  32. 32.
    Camino G, Lomakin SM, Lazzari M (2001) Polydimethylsiloxane thermal degradation. Part 1. Kinetic aspects. Polymer 42:2395CrossRefGoogle Scholar
  33. 33.
    Lewicki JP et al (2008) The stability of polysiloxanes incorporating nano-scale physical property modifiers. Sci Technol Adv Mater 9:024403CrossRefGoogle Scholar
  34. 34.
    Chen D et al (2010) Synthesis and characterization of novel room temperature vulcanized (RTV) silicone rubbers using vinyl-POSS derivatives as cross linking agents. Polymer 51:3867CrossRefGoogle Scholar
  35. 35.
    Grassie N, Macfarlane IG (1978) The thermal degradation of polysiloxanes—I. Poly(dimethylsiloxane). Eur Polym J 14:875CrossRefGoogle Scholar
  36. 36.
    Thomas TH, Kendrick TC (1969) Thermal analysis of polydimethylsiloxanes. I. Thermal degradation in controlled atmospheres. J Polym Sci Part A-2 Polym Phys 7:537CrossRefGoogle Scholar
  37. 37.
    Grassie N, Macfarlane IG, Francey KF (1979) The thermal degradation of polysiloxanes—II. Poly(methylphenylsiloxane). Eur Polym J 15:415CrossRefGoogle Scholar
  38. 38.
    Kučera M, Lanikova J (1961) Thermal stability of polydimethylsiloxane. I. Deactivation of basic active centers. J Polym Sci 54:375CrossRefGoogle Scholar
  39. 39.
    Camino G, Lomakin SM, Lageard M (2002) Thermal polydimethylsiloxane degradation. Part 2. The degradation mechanisms. Polymer 43:2011CrossRefGoogle Scholar
  40. 40.
    Nikitina TS et al (1968) Thermal degradation of polysiloxanes with hetero-units in the chain and modified with low molecular weight additives. Polym Sci USSR 10:3228CrossRefGoogle Scholar
  41. 41.
    Romo-Uribe A et al (1998) Viscoelastic and morphological behavior of hybrid styryl‐based polyhedral oligomeric silsesquioxane (POSS) copolymers. J Polym Sci Part B Polym Phys 36:1857CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  • Xiaoxiao Gao
    • 1
  • Hanchao Liu
    • 1
  • Haitao Wei
    • 1
  • Jing Zheng
    • 1
  • Guangsu Huang
    • 1
    Email author
  1. 1.College of Polymer Science and Engineering, State Key Laboratory of Polymer Material and EngineeringSichuan UniversityChengduPeople’s Republic of China

Personalised recommendations