Polymer Bulletin

, Volume 76, Issue 5, pp 2601–2619 | Cite as

Ruthenium oxide–carbon-based nanofiller-reinforced conducting polymer nanocomposites and their supercapacitor applications

  • Murat AtesEmail author
  • Carlos Fernandez


In this review article, we have presented for the first time the new applications of supercapacitor technologies and working principles of the family of RuO2–carbon-based nanofiller-reinforced conducting polymer nanocomposites. Our review focuses on pseudocapacitors and symmetric and asymmetric supercapacitors. Over the last years, the supercapacitors as a new technology in energy storage systems have attracted more and more attention. They have some unique characteristics such as fast charge/discharge capability, high energy and power densities, and long stability. However, the need for economic, compatible, and easy synthesis materials for supercapacitors have led to the development of RuO2–carbon-based nanofiller-reinforced conducting polymer nanocomposites with RuO2. Therefore, the aim of this manuscript was to review RuO2–carbon-based nanofiller-reinforced conducting polymer nanocomposites with RuO2 over the last 17 years.


RuO2 nanosheet Faradaic redox reactions Pseudocapacitance Asymmetric supercapacitors Energy storage Nanocomposite Carbon materials Conducting polymer 



Active carbon


Active carbon nanofibers




Cerium oxide


Carbon fiber


Carbon nanotubes


Cobalt oxide


Specific capacitance


Cyclic voltammogram


Chemical vapor deposition




Electrochemical double-layer capacitance


Electrophoretic deposition


Electrochemical quartz crystal nanobalance


Graphene oxide




Ruthenium oxide


Hydrous ruthenium oxide


Hydrous ruthenium oxide/multi-walled carbon nanotube


Holey reduced graphene oxide


Mangane(IV) oxide


Nickel(II) oxide








Polyethylene glycol


Polyethylene oxide




Phase change materials


Polyvinyl alcohol










Charge transfer resistance


Ruthenium oxide


Hydrous ruthenium oxide


Reduced graphene oxide


Single-walled carbon nanotubes


Thermal management


X-ray diffraction




Vertically aligned carbon nanotubes


Compliance with ethical standards

Conflict of interest

There is no conflict of interest in this review article.


  1. 1.
    Guo XL, Kuang M, Li F, Liu XY, Zhang YX, Dong F, Losic D (2016) Engineering of three-dimensional (3-D) diatom@TiO2@MnO2 composites with enhanced supercapacitor performance. Electrochim Acta 190:159–167CrossRefGoogle Scholar
  2. 2.
    Guo XL, Li G, Kuang M, Yu L, Zhang YX (2015) Tailoring Kirkendall effect of the KCu7S4 microwires towards CuO@MnO2 core-shell nanostructures for supercapacitors. Electrochim Acta 174:87–92CrossRefGoogle Scholar
  3. 3.
    Patake VD, Lokhande CD, Joo OS (2009) Electrodeposited ruthenium oxide thin films for supercapacitors: effects of surface treatments. Appl Surf Sci 255:4192–4196CrossRefGoogle Scholar
  4. 4.
    Brezesinski T, Wang J, Tolbert SH, Dunn B (2010) Ordered mesoporous alpha-MoO3 with iso-oriented nanocrystalline walls for thin pseudocapacitors. Nat Mater 9:146–151CrossRefPubMedGoogle Scholar
  5. 5.
    Zhao DD, Bao SJ, Zhou WH, Li HL (2007) Preparation of hexagonal nanoporous nickel hydroxide film and its application for electrochemical capacitor. Electrochem Commun 9:869–874CrossRefGoogle Scholar
  6. 6.
    Kim IH, Kim KB (2006) Electrochemical characterization of hydrous ruthenium oxide thin-film electrodes for electrochemical capacitor applications. J Electrochem Soc 153:A383–A389CrossRefGoogle Scholar
  7. 7.
    Sugimoto W, Yokoshima K, Murakami Y, Takasu Y (2006) Charge storage mechanism of nanostructured anhydrous and hydrous ruthenium-based oxides. Electrochim Acta 52:1742–1748CrossRefGoogle Scholar
  8. 8.
    Augustyn V, Simon P, Dunn B (2014) Pseudocapacitive oxide materials for high-rate electrochemical energy storage. Energy Environ Sci 7:1597–1614CrossRefGoogle Scholar
  9. 9.
    Dubal DP, Chodankar NR, Holze R, Kim DH, Gomez-Romero P (2017) Ultrathin mesoporous RuCo2O4 nanoflakes: an advanced electrode for high-performance symmetric supercapacitors. Chemsuschem 10:1771–1782CrossRefPubMedGoogle Scholar
  10. 10.
    Bi RB, Wu XL, Cao FF, Jiang LY, Guo YG, Wan LJ (2010) Highly dispersed RuO2 nanoparticles on carbon nanotubes: facile synthesis and enhanced supercapacitance performance. J Phys Chem C 114:2448–2451CrossRefGoogle Scholar
  11. 11.
    Rakhi RB, Chen W, Hedhili MN, Cha D (2014) Enhanced rate performance of mesoporous Co3O4 nanosheet supercapacitor electrodes by hydrous RuO2 nanoparticles decoration. ACS Appl Mater Interfaces 6:4196–4206CrossRefPubMedGoogle Scholar
  12. 12.
    Liang J, Tan H, Xiao C, Zhou G, Guo S, Ding S (2015) Hydroxyl-riched halloysite clay nanotubes serving as substrate of NiO nanosheets for high-performance supercapacitor. J Power Sources 285:210–216CrossRefGoogle Scholar
  13. 13.
    Nair DP, Sakthivel T, Nivea R, Eshow JS, Gunasekaran V (2015) Effect of surfactants on electrochemical properties of vanadium pentaoxide nanoparticles synthesized via hydrothermal method. J Nanosci Nanotechnol 15:4392–4397CrossRefPubMedGoogle Scholar
  14. 14.
    Hu Z, Zu L, Jiang Y, Lian H, Liu Y, Li Z, Chen F, Wang X, Cui X (2015) High specific capacitance of polyaniline/mesoporous manganese dioxide composite using KI-H2SO4 electrolyte. Polymers 7:1939–1953CrossRefGoogle Scholar
  15. 15.
    Lei BH, Kong QR, Yang ZH, Yang Y, Wang Y, Pan SL (2016) Hierarchized band gap and enhanced optical responses of trivalent rare-earth metal nitrates due to (d–p) pi conjugation interactions. J Mater Chem C 4:6295–6301CrossRefGoogle Scholar
  16. 16.
    Borjanovic V, Bistricic L, Pucic I, Mikac L, Slunjski R, Jaksic M, McGuine G, Stankovic AT, Shenderova O (2016) Proton-radiation resistance of poly(ethylene terephthalate)-nanodiamond-graphene nanoplatelet nanocomposites. J Mater Sci 51:1000–1016CrossRefGoogle Scholar
  17. 17.
    Ullah N, McArlhur MA, Omanovic S (2015) Iridium-ruthenium oxide coatings for supercapacitors. Can J Chem Eng 93:1941–1948CrossRefGoogle Scholar
  18. 18.
    Hu CC, Chang KH (2000) Cyclic voltammetric deposition of hydrous ruthenium oxide for electrochemical capacitors: effects of codepositing iridium oxide. Electrochim Acta 45:2685–2696CrossRefGoogle Scholar
  19. 19.
    Fisher RA, Watt MR, Jud Ready W (2013) Functionalized carbon nanotubes supercapacitor electrode: a review on pseudocapacitive materials. ECS J Solid State Sci Technol 2:M3170–M3177CrossRefGoogle Scholar
  20. 20.
    Liu X, Pickup PG (2008) Ru oxide supercapacitors with high loadings and high power and energy densities. J Power Sources 176:410–416CrossRefGoogle Scholar
  21. 21.
    Panic VV, Dekanski AB, Nikolic BZ (2013) Tailoring the supercapacitive performances of noble metal oxides, porous carbons and their composites. J Serb Chem Soc 78:2141–2164CrossRefGoogle Scholar
  22. 22.
    Lokhande CD, Dubal DP, Joe OS (2011) Metal oxide thin film based supercapacitors. Curr Appl Phys 11:255–270CrossRefGoogle Scholar
  23. 23.
    Liu CC, Tsai DS, Susanti D, Yeh WC, Huang YS, Liu FJ (2010) Planar ultracapacitors of miniature interdigital electrode loaded with hydrous RuO2 and RuO2 nanorods. Electrochim Acta 55:5768–5774CrossRefGoogle Scholar
  24. 24.
    Yang XF, Wang GC, Wang RY, Li XW (2010) A novel layered manganese oxide/poly(aniline-co-o-anisidine) nanocomposite and its application for electrochemical supercapacitor. Electrochim Acta 55:5414–5419CrossRefGoogle Scholar
  25. 25.
    Nikolic BZ, Panic VV, Dekanski AB (2012) Intrinsic potential dependent performances of a sol–gel prepared electrocatalytic IrO2–TiO2 coating of dimensionally stable anodes. Electrocatalysis 3:360–368CrossRefGoogle Scholar
  26. 26.
    Ni Y, Xu J, Liang Q, Shao SJ (2017) Enzyme-free glucose sensor based on heteroatom-enriched activated carbon (HAC) decorated with hedgehog-like NiO nanostructures. Sens Actuators B Chem 250:491–498CrossRefGoogle Scholar
  27. 27.
    Yu M, Han Y, Li J, Wang L (2017) One-step synthesis of sodium carboxymethyl cellulose-derived carbon aerogel/nickel composites for energy storage. Chem Eng J 324:287–295CrossRefGoogle Scholar
  28. 28.
    Yang CC, Tsai MH, Huang CW, Yen PJ, Pan CC, Wu WW, Wei KH, Dung LR, Tseng TY (2017) Carbon nanotube/nitrogen-doped reduced graphene oxide nanocomposites and their application in supercapacitors. J Nanosci Nanotechnol 17:5366–5373CrossRefGoogle Scholar
  29. 29.
    Yao Z, Meng Y, Xia Q, Li D, Zhao Y, Li C, Jiang Z (2017) Synthesis of carbon modified TiO2 nanotubes composite films by gas thermal penetration as symmetrical and binder-free electrochemical supercapacitor. J. Alloys Compd 721:795–802CrossRefGoogle Scholar
  30. 30.
    Wei YX, Ding RM, Zhang CH, Lv BL, Wang Y, Chen CM, Wang XP, Xu J, Yang Y, Li YW (2017) Facile synthesis of self-assembled ultrathin alpha-FeOOH nanorod/graphene oxide composites for supercapacitors. J Colloid Interface Sci 504:593–602CrossRefPubMedGoogle Scholar
  31. 31.
    Bae J, Park JY, Kwan OS, Lee CS (2017) Energy efficient capacitors based on graphene/conducting polymer hybrids. J Ind Eng Chem 51:1–11CrossRefGoogle Scholar
  32. 32.
    Khandare L, Terdale S (2017) Gold nanoparticles decorated MnO2 nanowires for high performance supercapacitor. Appl Surf Sci 418:22–29CrossRefGoogle Scholar
  33. 33.
    Wang X, Liu P (2014) Improving the electrochemical performance of polyaniline electrode for supercapacitor by chemical oxidative copolymerization with p-phenylene daimine. J Ind Eng Chem 20:1324–1331CrossRefGoogle Scholar
  34. 34.
    Meng Y, Wang L, Xiao H, Ma Y, Chao L, Xie Q (2016) Facile electrochemical preparation of composite film of ruthenium dioxide and carboxylated graphene for a high performance supercapacitors. RSC Adv 6:33666–33675CrossRefGoogle Scholar
  35. 35.
    Vellacheri R, Pillai VK, Kurungot S (2012) Hydrous RuO2-carbon nanofiber electrodes with high mass and electrode specific capacitance for efficient energy storage. Nanoscale 4:890–896CrossRefPubMedGoogle Scholar
  36. 36.
    Pico F, Ibanez J, Lillo-Rodenas MA, Linares-Solano A, Rojas RM, Amarilla JM, Rojo JM (2008) Understanding RuO2 center dot xH(2)O/carbon nanofiber composites as supercapacitor electrodes. J Power Sources 176:417–425CrossRefGoogle Scholar
  37. 37.
    Wang P, Liu H, Xu Y, Chen Y, Yang J, Tan Q (2016) Supported ultrafine ruthenium oxides with specific capacitance up to 1099 F g−1 for a supercapacitor. Electrochim Acta 194:211–218CrossRefGoogle Scholar
  38. 38.
    Shu Y, Xu J, Chen JY, Xu Q, Xiao X, Jin DQ, Pang H, Hu XY (2017) Ultrasensitive electrochemical detection of H2O2 in living cell based on ultrathin MnO2 nanosheets. Sens Actuators B Chem 252:72–78CrossRefGoogle Scholar
  39. 39.
    Shao YQ, Chen ZJ, Zhu JQ, Zhang S, Lin DY, Yi ZY, Tang D (2016) Relationship between electronic structures and capacitive performance of the electrode material. J Am Ceram Soc 99:2504–2511CrossRefGoogle Scholar
  40. 40.
    Zhang Y, Park SJ (2017) Incorporation of RuO2 into charcoal-derived carbon with controllable microporosity by CO2 activation for high-performance supercapacitor. Carbon 122:287–297CrossRefGoogle Scholar
  41. 41.
    Ma HY, Kong DB, Xu Y, Xie XY, Tao Y, Xiao ZC, Lv W, Jang HD, Huang JX, Yang QH (2017) Disassembly–reassembly approach to RuO2/graphene composites for ultrahigh volumetric capacitance supercapacitor. Small 13, Article number: UNSP1701026Google Scholar
  42. 42.
    Ambare RC, Bharadwaj SR, Lokhande BJ (2015) Non-aqueous route spray pyrolyzed Ru:Co3O4 thin electrodes for supercapacitor application. Appl Surf Sci 349:887–896CrossRefGoogle Scholar
  43. 43.
    Shinde VR, Mahadik SB, Gujar TP, Lokhande CD (2006) Supercapacitive cobalt oxide (Co3O4) thin films by spray pyrolysis. Appl Surf Sci 252:7487–7492CrossRefGoogle Scholar
  44. 44.
    Gujar TP, Shinde VR, Lokhande CD, Kim WY, Jung KD, Joo OS (2007) Spray deposited amorphous RuO2 for an effective use in electrochemical supercapacitor. Electrochem Commun 9:504–510CrossRefGoogle Scholar
  45. 45.
    Wang P, Liu H, Tan Q, Yang J (2014) Ruthenium oxide-based nanocomposites with high specific surface area and improved capacitance as a supercapacitor. RSC Adv 4:42839–42845CrossRefGoogle Scholar
  46. 46.
    Lee H, Cho MS, Nam ID, Lee Y (2010) RuOx/polypyrrole nanocomposite electrode for electrochemical capacitors. Synth Met 160:1055–1059CrossRefGoogle Scholar
  47. 47.
    Hu CC, Chang KH, Lin MC, Wu YT (2006) Design and tailoring of the nanotubular arrayed architecture of hydrous RuO2 for next generation supercapacitors. Nano Lett 6:2690–2695CrossRefPubMedGoogle Scholar
  48. 48.
    Xiang D, Yin L, Wang C, Zhang L (2016) High electrochemical performance of RuO2–Fe2O3 nanoparticles embedded ordered mesoporous carbon as a supercapacitor electrode material. Energy 106:103–111CrossRefGoogle Scholar
  49. 49.
    Terasawa N, Mukai K, Yamato K, Asaka K (2012) Superior performance of non-activated multi-walled carbon nanotube polymer actuator containing ruthenium oxide over a single-walled carbon nanotubes. Carbon 50:1888–1896CrossRefGoogle Scholar
  50. 50.
    Terasawa N, Asaka K (2014) High-performance hybrid (electrostatic double-layer and faradaic capacitor based) polymer actuators incorporating nickel oxide and vapor-grown carbon nanofibers. Langmuir 30:14343–14351CrossRefPubMedGoogle Scholar
  51. 51.
    Arabale G, Wagh D, Kulkarni M, Mulla I, Vernekar S, Vijayamoharan K, Rao AM (2003) Enhanced supercapacitance of multiwalled carbon nanotubes functionalized with ruthenium oxide. Chem Phys Lett 376:207–213CrossRefGoogle Scholar
  52. 52.
    Wang X, Yin Y, Hao C, You Z (2015) A high-performance three-dimensional microsupercapacitor based on ripple-like ruthenium oxide-carbon nanotube composite films. Carbon 82:436–445CrossRefGoogle Scholar
  53. 53.
    Kim KM, Lee YG, Shin DO, Ko JM (2016) Supercapacitive properties of layered electrodes composed of electrodeposited RuO2 and polyaniline. Electrochim Acta 196:309–315CrossRefGoogle Scholar
  54. 54.
    Mortazavi B, Yang HL, Mohebbi F, Cuniberti G, Rabczuk T (2017) Graphene or h-BN paraffin composite structures for the thermal management of Li-ion batteries: a multiscale investigation. Appl Energy 202:323–334CrossRefGoogle Scholar
  55. 55.
    Guldi DM, Rahman GMA, Zerbetto F, Prato M (2005) Carbon nanotubes in electron donor–acceptor nanocomposites. Acc Chem Res 38:871–878CrossRefPubMedGoogle Scholar
  56. 56.
    Vita A, Italiano C, Fabiano C, Pino L, Lagana M, Recupero V (2016) Hydrogen-rich gas production by steam reforming of n-dodecane part I: catalytic activity of Pt/CeO2 catalysts in optimized bed configuration. Appl Catal B Environ 199:350–360CrossRefGoogle Scholar
  57. 57.
    Achilleos DS, Hatton TA (2015) Surface design and engineering of hierarchical hybrid nanostructures for asymmetric supercapacitors with improved electrochemical performance. J Colloid Interface Sci 447:282–301CrossRefPubMedGoogle Scholar
  58. 58.
    Luo X, Yang JY, Yan D, Wang W, Wu X, Zhu ZH (2017) MnO2-decorated 3D porous carbon skeleton devived from mollusc shell for high-performance supercapacitor. J Alloys Compd 723:505–511CrossRefGoogle Scholar
  59. 59.
    Xiong P, Huang H, Wang X (2014) Design and synthesis of ternary cobalt ferrite/graphene/polyaniline hierarchical nanocomposites for high performance supercapacitors. J Power Sources 245:937–946CrossRefGoogle Scholar
  60. 60.
    Naoi K, Ishimote S, Miyamoto J, Naoi W (2012) Second generation nanohybrid supercapacitor: evolution of capacitive energy storage devices. Energy Environ Sci 5:9363–9373CrossRefGoogle Scholar
  61. 61.
    Naoi K, Simon P (2008) New materials and new configurations for advanced electrochemical capacitors. Electrochem Soc Interface 17:34–37Google Scholar
  62. 62.
    Xia H, Meng YS, Yuan G, Cui C, Lu L (2012) A symmetric RuO2/RuO2 supercapacitor operating at 1.6 V by using a neutral aqueous electrolyte. Electrochem Solid State Lett 15:A60–A63CrossRefGoogle Scholar
  63. 63.
    Wu Z, Wang D, Ren W, Zhao J, Zhou G, Li F, Cheng H (2010) Anchoring hydrous RuO2 on graphene sheets for high-performance electrochemical capacitors. Adv Funct Mater 20:3595–3602CrossRefGoogle Scholar
  64. 64.
    Yousefi T, Golikand AN, Mashhadizadeh MH, Aghazadeh M (2012) Template-free synthesis of MnO2 nanowires with secondary flower like structure: characterization and supercapacitor behavior studies. Curr Appl Phys 12:193–198CrossRefGoogle Scholar
  65. 65.
    Zhao X, Sanchez BM, Dobson P, Grant P (2011) The role of nanomaterials in redox-based supercapacitors for next generation energy storage devices. Nanoscale 3:839–855CrossRefPubMedGoogle Scholar
  66. 66.
    Rauda IE, Augustyn V, Dunn B, Tolbert SH (2013) Enhancing pseudocapacitive charge storage in polymer templated mesoporous materials. Acc Chem Res 46:1113–1124CrossRefPubMedGoogle Scholar
  67. 67.
    Wu ZS, Wang DW, Ren W, Zhao J, Zhou G, Li F, Cheng HM (2010) Anchoring hydrous RuO2 on graphene sheets for high-performance electrochemical capacitors. Adv Funct Mater 20:3595–3602CrossRefGoogle Scholar
  68. 68.
    Menna C, Bakis CE, Prota A (2016) Effect of nanofiller length and orientation distributions on mode I fracture toughness of unidirectional fiber composites. J Compos Mater 50:1331–1352CrossRefGoogle Scholar
  69. 69.
    Gopinathan J, Pillai MM, Elakkiya V, Selvakumar R, Bhattacharyya A (2016) Carbon nanofiller incorporated electrically conducting poly(elipson-caprolactone) nanocomposite films and their biocompatibility studies using MG-63 cell line. Polym Bull 73:1037–1053CrossRefGoogle Scholar
  70. 70.
    Chen S, Ma W, Xiang H, Cheng Y, Yang S, Weng W, Zhu M (2016) Conductive, tough, hydrophilic poly(vinyl alcohol)/graphene hybrid fibers for wearable supercapacitors. J Power Sources 319:271–280CrossRefGoogle Scholar
  71. 71.
    Yang KS, Kim CH, Kim BH (2015) Preparation and electrochemical properties of RuO2-containing activated carbon nanofiber composites with hollow cores. Electrochim Acta 174:290–296CrossRefGoogle Scholar
  72. 72.
    Sugimoto W, Kizaki T, Yokoshima K, Murakami Y, Takasu Y (2004) Evaluation of the pseudocapacitance in RuO2 with RuO2/GC thin film electrode. Electrochim Acta 49:313–320CrossRefGoogle Scholar
  73. 73.
    Wang W, Guo S, Lee I, Ahmed K, Zhong J, Favors Z, Zaera F, Ozkan M, Ozkan CS (2014) Hydrous ruthenium oxide nanoparticles anchored to graphene and carbon nanotube hybrid foam for supercapacitors. Sci Rep 4, Article number: 4452Google Scholar
  74. 74.
    Ju YW, Choi GR, Jung HR, Kim C, Yang KS, Lee WJN (2007) A hydrous ruthenium oxide-carbon nanofibers composite electrodes prepared by electrospinning. J Electrochem Soc 154:A192–A197CrossRefGoogle Scholar
  75. 75.
    Chervin CN, Lubers AM, Long JW, Rolison DR (2010) Effect of temperature and atmosphere on the conductivity and electrochemical capacitance of single-unit thick ruthenium dioxide. J Electroanal Chem 644:155–163CrossRefGoogle Scholar
  76. 76.
    Ryan JV, Berry AD, Anderson ML, Long JW, Stroud RM, Cepak VM (2000) Electronic connection to the interior of a mesoporous insulator with nanowires of crystalline RuO2. Nature 406:169–172CrossRefPubMedGoogle Scholar
  77. 77.
    Kim BH, Kim CH, Lee DG (2016) Mesopore-enriched activated carbon nanofiber web containing RuO2 as electrode material for high-performance supercapacitors. J Electroanal Chem 760:64–70CrossRefGoogle Scholar
  78. 78.
    Fam DWH, Azoubel S, Liu L, Huang J, Mandler D, Magdassi S, Tok AIY (2015) Novel felt pseudocapacitor based on carbon nanotube/metal oxide. J Mater Sci 50:6578–6585CrossRefGoogle Scholar
  79. 79.
    Liu X, Pickup PG (2011) Carbon fabric supported manganese and ruthenium oxide thin films for supercapacitors. J Electrochem Soc 158:A241–A249CrossRefGoogle Scholar
  80. 80.
    Kim BH, Kim CH, Lee DG (2016) Mesopore-enriched activated carbon nanofiber web containing RuO2 as electrode material for high-performance supercapacitors. J Electroanal Chem 760:64–70CrossRefGoogle Scholar
  81. 81.
    Zhu Y, Ji X, Pan C, Sun Q, Song W, Fang L, Chen Q, Banks CE (2013) A carbon quantum dot decorated RuO2 network:outstanding supercapacitors under ultrafast charge and discharge. Energy Environ Sci 6:3665–3675CrossRefGoogle Scholar
  82. 82.
    Bouchard J, Cayla A, Odent S, Lutz V, Devaux E, Campagne C (2016) Processing and characterization of polyethersulfone wet-spun nanocomposite fibres containing mutiwalled carbon nanotubes. Synth Met 217:304–313CrossRefGoogle Scholar
  83. 83.
    Bouchard J, Cayla A, Lutz V, Campagne C, Devaux E (2012) Electrical and mechanical properties of phenoxy/multiwalled carbon nanotubes multifilament yarn processed by melt spinning. Text Res J 82:2116–2125CrossRefGoogle Scholar
  84. 84.
    Murakami H, Nakashima N (2006) Soluble carbon nanotubes and their applications. J Nanosci Nanotechnol 6:16–27PubMedGoogle Scholar
  85. 85.
    Nguyen DN, Yoon H (2016) Recent advances in nanostructured coonducting polymers: from synthesis to practical applications. Polymers 8, Article number: 118Google Scholar
  86. 86.
    Wei C, Srivastava D, Cho K (2002) Thermal expansion and diffusion coefficients of carbon nanotube-polymer composites. Nano Lett 3:647–650CrossRefGoogle Scholar
  87. 87.
    Shin US, Knowles JC, Kim HW (2011) Positive charge doping on carbon nanotube walls and anion directed tunable dispersion of the derivatives. Bull Korean Chem Soc 32:1635–1639CrossRefGoogle Scholar
  88. 88.
    Yoon IIK, Hwang JY, Jang WC, Kim HW, Shin US (2014) Natural bone-like biomimetic surface modification of titanium. Appl Surf Sci 301:401–409CrossRefGoogle Scholar
  89. 89.
    Lo AY, Jheng Y, Huang TC, Tseng CM (2015) Study on RuO2/CMK-3/CNTs composites for high power and high energy density supercapacitor. Appl Energy 153:15–21CrossRefGoogle Scholar
  90. 90.
    Brown B, Cordova IA, Parker CB, Stone BR, Glass JT (2015) Optimization of active manganase oxide electrodeposits using graphenated carbon nanotube electrodes for supercapacitors. Chem Mater 27:2430–2438CrossRefGoogle Scholar
  91. 91.
    Peng L, Peng X, Liu B, Wu C, Xie Y, Yu G (2013) Ultrathin two-dimensional MnO2/graphene hybrid nanostructures for high performance, flexible planar supercapacitors. Nano Lett 13:2151–2157CrossRefPubMedGoogle Scholar
  92. 92.
    Wu X, Xiong W, Chen Y, Lan D, Pu X, Zeng Y, Gao H, Chen J, Tong H, Zhu Z (2015) High-rate supercapacitor utilizing hydrous ruthenium dioxide nanotubes. J Power Sources 294:88–93CrossRefGoogle Scholar
  93. 93.
    Li H, Wang R, Cao R (2008) Physical and electrochemical characterization of hydrous ruthenium oxide/ordered mesoporous carbon composites as supercaopacitor. Microporous Mesoporous Mater 111:32–38CrossRefGoogle Scholar
  94. 94.
    Chaitra K, Sivaraman P, Vinny RT, Bhatta UM, Nagaraju N, Kathyayini N (2016) High energy density performance of hydrothermally produced hydrous ruthenium oxide/multiwalled carbon nanotubes composite: design of an asymmetric supercapacitor with excellent cycle life. J Energy Chem 25:627–635CrossRefGoogle Scholar
  95. 95.
    Liu R, Luo Z, Wei Q, Zhou X (2016) Pt-RuO2 nanoparticles supported on diaminoanthraquinone-functionalized carbon nanotubes as efficient catalysts for methanol oxidation. Mater Des 94:132–138CrossRefGoogle Scholar
  96. 96.
    Jung CY, Zhao TS, Zeng L, Tan P (2016) Vertically aligned carbon nanotube-ruthenium dioxide core-shell cathode for non-aqueous lithium-oxygen batteries. J Power Sources 331:82–90CrossRefGoogle Scholar
  97. 97.
    Hossain MK, Chowdhury NMR, Hosur M, Jeelani S, Bolden NW (2015) Enhanced properties of epoxy composite reinforced with amino-functionalized graphene nanoplateles. In: Proceedings of the ASME International Mechanical Engineering Congress and Exposition, 9, Article number: V009T12A072. Housten, TX, 13–19 Nov 2015Google Scholar
  98. 98.
    Yang Y, Liang Y, Zhang Y, Zhang Z, Li Z, Hu Z (2015) Three-dimensional graphene hydrogel supported ultrafine RuO2 nanoparticles for supercapacitor electrodes. New J Chem 39:4035–4040CrossRefGoogle Scholar
  99. 99.
    Hwang JY, El-Kady MF, Wang Y, Wang L, Shao Y, Marsh K, Ko JM, Kaner RB (2015) Direct preparation and processing of graphene/RuO2 nanocomposite electrodes for high-performance capacitive energy storage. Nano Energy 18:57–70CrossRefGoogle Scholar
  100. 100.
    Leng X, Liu R, Zou J, Xiong X, He H (2016) One-pot hydrothermal synthesis of graphene–RuO2–TiO2 nanocomposites. Mater Lett 166:175–178CrossRefGoogle Scholar
  101. 101.
    Ensafi AA, Jafari-Asl M, Nabiyan A, Rezaei B (2016) Preparation of three-dimensional ruthenium oxide@graphene oxide based on etching of Ni–Al/layered double hydroxides: application for electrochemical hydrogen generation. J Electrochem Soc 163:H610–H617CrossRefGoogle Scholar
  102. 102.
    Leng X, Zou J, Xiong X, He H (2015) Electrochemical capacitive behavior of RuO2/graphene composites prepared under various precipitation conditions. J Alloys Compd 653:577–584CrossRefGoogle Scholar
  103. 103.
    Amir FZ, Pham VH, Mullinax DW, Dickerson JH (2016) Enhanced performance of HRGO-RuO2 solid state flexible supercapacitors fabricated by electrophoretic deposition. Carbon 107:338–343CrossRefGoogle Scholar
  104. 104.
    Yaragalla S, Sindam B, Abraham J, Raju KCJ, Kalarikkal N, Thomas S (2015) Fabrication of graphite-graphene-ionic liquid modified carbon nanotubes filled natural rubber thin films for microwave and energy storage applications. J Polym Res 22, Article number: 137Google Scholar
  105. 105.
    Ali TM, Padmanathan N, Selladurai S (2015) Effect of nanofiller CeO2 on structural, conductivity and dielectric behaviors of plasticized blend nanocomposite polymer electrolyte. Ionics 21:829–840CrossRefGoogle Scholar
  106. 106.
    Sahan N, Fois M, Paksoy H (2015) Improving thermal conductivity phase change materials—a study of parafin nanomagnetite composites. Sol Energy Mater Sol Cells 137:61–67CrossRefGoogle Scholar
  107. 107.
    Warzoha RJ, Fleischer AS (2015) Effect of carbon nanotube interfacial geometry on thermal transport in solid-liquid phase change materials. Appl Energy 154:271–276CrossRefGoogle Scholar
  108. 108.
    Fan LW, Fang X, Wang X, Zeng Y, Xiao YQ, Yu ZT, Xu X, Hu YC, Cen KF (2013) Effects of various carbon nanofillers on the thermal conductivity and energy storage properties of parafin-based nanocomposite phase change materials. Appl Energy 110:163–172CrossRefGoogle Scholar
  109. 109.
    Fan LW, Zhu ZQ, Zeng Y, Xiao YQ, Liu XL, Wu YY, Ding Q, Yu ZT, Cen KF (2015) Transient performance of a PCM-based heat sink with high aspect-ratio carbon nanofillers. Appl Therm Eng 75:532–540CrossRefGoogle Scholar
  110. 110.
    Zhao ZH, Richardson GF, Meng QS, Zhu SM, Kuan HC, Ma J (2016) PEDOT-based composites as electrode materials for supercapacitors. Nanotechnology 27, Article number: 042001Google Scholar
  111. 111.
    Lean MH, Chu WPL (2016) Effective permittivity of nanocomposites from 3D charge transport simulations. J Appl Polym Sci 133, Article number: 43300Google Scholar
  112. 112.
    Perez LD, Giraldo LF, Brostow W, Lopez BL (2007) Poly(methyl acrylate) plus mesoporous silica nanohybrids: mechanical and thermophysical properties. E-Polymers, Article number: 029Google Scholar
  113. 113.
    Yaragalla S, Sindam B, Abraham J, Raju KCJ, Kalarikkal N, Thomas S (2015) Fabrication of graphite-graphene ionic liquid modified carbon nanotubes filled natural rubber thin films for microwave and energy storage applications. J Polym Res 22, Article number: 137Google Scholar
  114. 114.
    Nguyen DN, Yoon H (2016) Recent advances in nanostructured conducting polymers: from synthesis to practical applications. Polymers 8, Article number: 118Google Scholar
  115. 115.
    Ahn KJ, Lee Y, Choi H, Kim MS, Im K, Noh S, Yoon H (2015) Surfactant-templated synthesis of polypyrrole nanocages as redox mediators for efficient energy storage. Sci Rep 5, Article number: 14097Google Scholar
  116. 116.
    Zhang C, Zhou H, Yu X, Ye T, Huang Z, Kuang Y (2014) Synthesis of RuO2 decorated quasi graphene nanosheets and their application in supercapacitors. RSC Adv 4:11197–11205CrossRefGoogle Scholar
  117. 117.
    Liu M, Wang X, Huang Z, Guo P, Wang Z (2017) In-situ solution synthesis of graphene supported lamellar 1T-MoTe2 for enhanced pseuducapacitors. Mater Lett 206:229–232CrossRefGoogle Scholar
  118. 118.
    Ye T, Kuang Y, Xie C, Huang Z, Zhang C, Shan D, Zhou H (2014) Enhanced performance by polyaniline/tailored carbon nanotubes composite as supercapacitor electrode material. J Appl Polym Sci 131, Article number: 39971Google Scholar
  119. 119.
    Sekar P, Anothumakkoel B, Kurungot S (2015) 3D polyaniline porous layer anchored pillared graphene sheets: enhanced interface joined with high conductivity for better charge storage applications. ACS Appl Mater Interfaces 7:7661–7669CrossRefPubMedGoogle Scholar
  120. 120.
    Chen L, Sun LJ, Luan F, Liang Y, Li Y, Liu XX (2010) Synthesis and pseudocapacitive studies of composite films of polyaniline and manganese oxide nanoparticles. J Power Sources 195:3742–3747CrossRefGoogle Scholar
  121. 121.
    Rakhi RB, Chen W, Cha D, Alshareef HN (2012) Substrate dependent self-organization of mesoporous cobalt oxide nanowires with remarkable pseudocapacitance. Nano Lett 12:2559–2567CrossRefPubMedGoogle Scholar
  122. 122.
    Chen Z, Augustyn V, Wen J, Zhang Y, Shen M, Dunn B, Lu Y (2011) High performance supercapacitors based on interwined CNT/V2O5 nanowire nanocomposites. Adv Mater 23:791–795CrossRefPubMedGoogle Scholar
  123. 123.
    Wang YG, Li HQ, Xia YY (2006) Ordered whiskerlike polyaniline grown on the surface of mesoporous carbon and its electrochemical capacitance performance. Adv Mater 18:2619–2623CrossRefGoogle Scholar
  124. 124.
    Hong SC, Kim S, Jong WJ, Jang WJ, Han TH, Hong JP, Oh JS, Hwang T, Lee Y, Lee JH, Nam JD (2004) Supercapacitor characteristics of pressurized RuO2/carbon powder as binder-free electrodes. RSC Adv 4:48276–48284CrossRefGoogle Scholar
  125. 125.
    Barbieri O, Hahn M, Foelske A, Kötz R (2006) Effect of electronic resistance and water content on the performance of RuO2 for supercapacitors. J Electrochem Soc 153:A2049–A2054CrossRefGoogle Scholar
  126. 126.
    Chaitra K, Sivaraman P, Vinny RT, Bhatta UM, Nagaraju N, Kathyayini N (2016) High energy density performance of hydrothermally produced hydrous ruthenium oxide/multiwalled carbon nanotubes composite: design of an asymmetric supercapacitor with excellent cycle life. J Energy Chem 25:627–635CrossRefGoogle Scholar
  127. 127.
    Gnerlich M, Ben-Yoav H, Culver JN, Ketchum DR, Ghodssi R (2015) Selective deposition of nanostructured ruthenium oxide using Tobacco masaic virus for micro-supercapacitors in solid Nafion electrolyte. J Power Sources 293:649–656CrossRefGoogle Scholar
  128. 128.
    Neupane S, Kaganas G, Valenzuela R, Kumari L, Wang XW, Li WZ (2011) Synthesis and characterization of ruthenium dioxide nanostructures. J Mater Sci 46:4803–4811CrossRefGoogle Scholar
  129. 129.
    Lakshminarayana G, Kityk IV, Nagao T (2016) Synthesis, structural and electrical characterization of RuO2 sol–gel spin-coating nano-films. J Mater Sci Mater Electron 27:10791–10797CrossRefGoogle Scholar
  130. 130.
    Cho CJ, Noh MS, Lee WC, An CH, Kang CY, Hwang CS, Kim SK (2017) Ta-doped SnO2 as a reduction-resistant oxide electrode for DRAM capacitors. J Mater Chem C 5:9405–9411CrossRefGoogle Scholar
  131. 131.
    Hu CC, Chen WC (2004) Effects of substrates on the capacitive performance of RuOx center dot nH(2)O and activated carbon-RuOx electrodes for supercapacitors. Electrochim Acta 49:3469–3477CrossRefGoogle Scholar
  132. 132.
    Hu CC, Chen WC, Chang KH (2004) How to achieve maximum utilization of hydrous ruthenium oxide for supercapacitors. J Electrochem Soc 151:A281–A290CrossRefGoogle Scholar
  133. 133.
    Hu CC, Chang KH, Lin MC, Wu YT (2006) Design and tailoring of the nanotubular arrayed architecture of hydrous RuO2 for next generation supercapacitors. Nano Lett 6:2690–2695CrossRefPubMedGoogle Scholar
  134. 134.
    Chen MW (2013) Toward the theoretical capacitance of RuO2 reinforced by highly conductive nanoporous Gold. Adv Energy Mater 3:851–856CrossRefGoogle Scholar
  135. 135.
    Zhi M, Xiang C, Li J, Li M, Wu N (2013) Nanostructured carbon-metal oxide composite electrodes for supercapacitors: a review. Nanoscale 5:72–88CrossRefPubMedGoogle Scholar
  136. 136.
    Faraji S, Ani FN (2015) The development supercapacitor from activated carbon by electroless plating—a review. Renew Sustain Energy Rev 42:823–834CrossRefGoogle Scholar
  137. 137.
    Ramani M, Haran BS, White RE, Popov BN, Arsov L (2001) Studies on activated carbon capacitor materials loaded with different amounts of ruthenium oxide. J Power Sources 93:209–214CrossRefGoogle Scholar
  138. 138.
    Yao Y, Yang Z, Sun H, Wang S (2012) Hydrothermal synthesis of Co3O4-graphene for heterogeneous activation of peroxymonosulfate for decomposition of phenol. Ind Eng Chem Res 51:14958–14965CrossRefGoogle Scholar
  139. 139.
    Hu CC, Huang YH, Chang KH (2002) Annealing effects on the physicochemical characteristics of hydrous ruthenium and ruthenium-iridium oxides for electrochemical supercapacitors. J Power Sources 108:117–127CrossRefGoogle Scholar
  140. 140.
    Wang Y, Guo J, Wang T, Shao J, Wang D, Yang YW (2015) Mesoporous transition metal oxides for supercapacitors. Nanomaterials 5:1667–1689CrossRefPubMedPubMedCentralGoogle Scholar
  141. 141.
    Arnold CB, Wartena RC, Swider-Lyons KE, Pigue A (2003) Direct-write planar microultracapacitors by laser engineering. J Electrochem Soc 150:A571–A575CrossRefGoogle Scholar
  142. 142.
    Sopcic S, Rokovic MK, Mandic Z, Roka A, Inzelt G (2011) Mass changes accompanying the pseudocapacitance of hydrous RuO2 under different experimental conditions. Electrochim Acta 56:3543–3548CrossRefGoogle Scholar
  143. 143.
    Nquyen NL, Rochefort D (2014) Electrochemistry of ruthenium dioxide composite electrodes in diethylmethylammonium-triflate protic ionic liquid and its mixtures with acetonitrile. Electrochim Acta 147:96–103CrossRefGoogle Scholar
  144. 144.
    Naveen AN, Selladurai S (2015) Fabrication and performance evaluation of symmetrical supercapacitor based on manganese oxide nanorods-PANI composite. Mater Sci Semicond Process 40:468–478CrossRefGoogle Scholar
  145. 145.
    Warren R, Sammoura F, Tounsi F, Sanghadasa M, Lin LW (2015) Highly active ruthenium oxide coating via ALD and electrochemical activation in supercapacitor applications. J Mater Chem A 3:15568–15575CrossRefGoogle Scholar
  146. 146.
    Zhan C, Lian C, Zhang Y, Thompson MW, Xie Y, Wu JZ, Kent PRC, Cummings PT, Jiang DE, Wesolowski DJ (2017) Computational insights into materials and interfaces for capacitive energy storage. Adv Sci 4, Article number: 1700059Google Scholar
  147. 147.
    Park PO, Lokhande CD, Park HS, Jung KD, Joo OS (2004) Performance of supercapacitor with electrodeposited ruthenium oxide film electrodes—effect of film thickness. J Power Sources 134:148–152CrossRefGoogle Scholar
  148. 148.
    Ramani M, Haran BS, White RE, Popov BN, Arsov L (2001) Studies on activated carbon capacitor materials loaded with different amounts of ruthenium oxide. J Power Sources 93:209–214CrossRefGoogle Scholar
  149. 149.
    Zubiao W, Shu T, Lili L, Yuping W (2012) Controlled particle size and shape of nanomaterials and their applications in supercapacitors in controlled nanofabrication. Pan Standford Publishing, Singapore, pp 473–519Google Scholar
  150. 150.
    Wang F, Xiao S, Hou Y, Hu C, Liu L, Wu Y (2013) Electrode materials for aqueous asymmetric supercapacitors. RSC Adv 3:13059–13084CrossRefGoogle Scholar
  151. 151.
    Algharaibeh Z, Liu X, Pickup PG (2009) An asymmetric anthraquinone-modified carbon-ruthenium oxide supercapacitor. J Power Sources 187:640–643CrossRefGoogle Scholar
  152. 152.
    Makino S, Yamauchi Y, Sugimoto W (2013) Synthesis of electro-deposited ordered mesoporous RuOx using lyotropic liquid crystal and application toward micro-supercapacitors. J Power Sources 227:153–160CrossRefGoogle Scholar
  153. 153.
    Das B, Behm M, Lindbergh G, Reddy MV, Chowdari BVR (2015) High performance metal nitrides, MN (M = Cr, Co) nanoparticles for non-aqueous hybrid supercapacitors. Adv Powder Technol 26:783–788CrossRefGoogle Scholar
  154. 154.
    Zhang C, Higgins TM, Park SH, O’Brien SE, Long D, Coleman JN, Nicolosi V (2016) Highly flexible and transparent solid-state supercapacitors based on RuO2/PEDOT:PSS conductive ultrathin films. Nano Energy 28:495–505CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Physical Chemistry Division, Department of Chemistry, Faculty of Arts and SciencesNamik Kemal UniversityTekirdagTurkey
  2. 2.School of Pharmacy and Life SciencesRobert Gordon UniversityAberdeenUK

Personalised recommendations