Polymer Bulletin

, Volume 76, Issue 5, pp 2499–2517 | Cite as

Effect of boron acrylate monomer content and multi-acrylate functional boron methacrylate on adhesive performance for water-borne acrylic polymers

  • Cansu Akarsu Dulgar
  • Tuba Çakır Çanak
  • İ. Ersin SerhatlıEmail author
Original Paper


In this study the influence of boron acrylates as functional monomer on adhesive and cohesive performance of water-borne pressure-sensitive adhesives coated on bi-orientated polypropylene (BOPP) has been investigated. A series of pressure-sensitive adhesives with different monomer composition was prepared using emulsion polymerization. The monomers were butyl acrylate; methyl methacrylate; acrylic acid; boron acrylate; and multi-acrylate functional boron methacrylate. The adhesive performance was studied at 0, 1.3 and 3.9% of boron acrylate monomer content based on total monomer composition and 1% of multi-acrylate functional boron methacrylate. The adhesives obtained with constant thickness were coated onto a BOPP and evaluated for the performance by measuring the tackiness, peel strength and shear strength on several surfaces including stainless steel, glass, aluminum (Al) and low density polyethylene. Results showed that addition of boron acrylate was slightly increasing the adhesion and cohesion performance on non-polar surfaces. While it did not show any dramatic decrease in the adhesive performance for different surfaces, the decomposition temperature showed increase in TGA analysis.


Emulsion polymerization Acrylic coating Water based Pressure-sensitive adhesive Boron acrylate 



The authors would like to express their gratitude to Istanbul Technical University Research Fund and Organik Kimya San. ve Tic. A.Ş. for their technical and financial support (ITU-AYP-2014-6).


  1. 1.
    Czech Z, Pełech R (2009) The thermal degradation of acrylic pressure-sensitive adhesives based on butyl acrylate and acrylic acid. Prog Org Coat 65(1):84–87CrossRefGoogle Scholar
  2. 2.
    Demarteau W, Loutz JM (1996) Rheology of acrylic dispersions for pressure sensitive adhesives. Prog Org Coat 27(1):33–44CrossRefGoogle Scholar
  3. 3.
    Ewert TR, Mannion AM, Coughlin ML, Macosko CW, Bates FS (2018) Influence of rheology on renewable pressure-sensitive adhesives from a triblock copolymer. J Rheol 62(1):161–170CrossRefGoogle Scholar
  4. 4.
    Zahra S-N, Austin H, Ashley B, Christopher WR, Cochran EW (2018) Rheological and physical characterization of pressure sensitive adhesives from bio-derived block copolymers. J Appl Polym Sci 135(34):46618CrossRefGoogle Scholar
  5. 5.
    Ding K, John A, Shin J, Lee Y, Quinn T, Tolman WB et al (2015) High-performance pressure-sensitive adhesives from renewable triblock copolymers. Biomacromol 16(8):2537–2539CrossRefGoogle Scholar
  6. 6.
    Nasiri M, Reineke TM (2016) Sustainable glucose-based block copolymers exhibit elastomeric and adhesive behavior. Polym Chem 7(33):5233–5240CrossRefGoogle Scholar
  7. 7.
    Gallagher JJ, Hillmyer MA, Reineke TM (2016) Acrylic triblock copolymers incorporating isosorbide for pressure sensitive adhesives. ACS Sustain Chem Eng 4(6):3379–3387CrossRefGoogle Scholar
  8. 8.
    Nasiri M, Saxon DJ, Reineke TM (2018) Enhanced mechanical and adhesion properties in sustainable triblock copolymers via non-covalent interactions. Macromolecules 51(7):2456–2465CrossRefGoogle Scholar
  9. 9.
    Lee S, Yuk JS, Park H, Kim Y-W, Shin J (2017) Multiblock thermoplastic elastomers derived from biodiesel, poly(propylene glycol), and l-Lactide. ACS Sustain Chem Eng 5(9):8148–8160CrossRefGoogle Scholar
  10. 10.
    Bakhshi H, Zohuriaan-Mehr MJ, Bouhendi H, Kabiri K (2009) Spectral and chemical determination of copolymer composition of poly (butyl acrylate-co-glycidyl methacrylate) from emulsion polymerization. Polym Test 28(7):730–736CrossRefGoogle Scholar
  11. 11.
    Reddy KR, Lee K-P, Gopalan AI (2007) Self-assembly directed synthesis of poly (ortho-toluidine)-metal (gold and palladium) composite nanospheres. J Nanosci Nanotechnol 7(9):3117–3125CrossRefGoogle Scholar
  12. 12.
    Sue-eng S, Boonchuwong T, Chaiyasat P, Okubo M, Chaiyasat A (2017) Preparation of stable poly(methacrylic acid)-b-polystyrene emulsion by emulsifier-free emulsion iodine transfer polymerization (emulsion ITP) with self-assembly nucleation. Polymer 110:124–130CrossRefGoogle Scholar
  13. 13.
    Khan MU, Reddy KR, Snguanwongchai T, Haque E, Gomes VG (2016) Polymer brush synthesis on surface modified carbon nanotubes via in situ emulsion polymerization. Colloid Polym Sci 294(10):1599–1610CrossRefGoogle Scholar
  14. 14.
    Hassan M, Reddy KR, Haque E, Minett AI, Gomes VG (2013) High-yield aqueous phase exfoliation of graphene for facile nanocomposite synthesis via emulsion polymerization. J Colloid Interface Sci 410:43–51CrossRefGoogle Scholar
  15. 15.
    Reddy KR, Hassan M, Gomes VG (2015) Hybrid nanostructures based on titanium dioxide for enhanced photocatalysis. Appl Catal A 489:1–16CrossRefGoogle Scholar
  16. 16.
    Hassan M, Reddy KR, Haque E, Faisal SN, Ghasemi S, Minett AI et al (2014) Hierarchical assembly of graphene/polyaniline nanostructures to synthesize free-standing supercapacitor electrode. Compos Sci Technol 98:1–8CrossRefGoogle Scholar
  17. 17.
    Reddy KR, Lee K-P, Gopalan AI, Kang H-D (2007) Organosilane modified magnetite nanoparticles/poly(aniline-co-o/m-aminobenzenesulfonic acid) composites: synthesis and characterization. React Funct Polym 67(10):943–954CrossRefGoogle Scholar
  18. 18.
    Reddy KR, Sin BC, Yoo CH, Sohn D, Lee Y (2009) Coating of multiwalled carbon nanotubes with polymer nanospheres through microemulsion polymerization. J Colloid Interface Sci 340(2):160–165CrossRefGoogle Scholar
  19. 19.
    Priyadarshi A, Shimin L, Mhaisalkar SG, Rajoo R, Wong EH, Kripesh V et al (2005) Characterization of optical properties of acrylate based adhesives exposed to different temperature conditions. J Appl Polym Sci 98(3):950–956CrossRefGoogle Scholar
  20. 20.
    Carmen P, Salvador EF, Teresa C, Paula B, Fernando C (2004) Fluorescent probes for monitoring the pulsed-laser-induced photocuring of poly(urethane acrylate)-based adhesives. J Polym Sci Part A Polym Chem 42(5):1227–1238CrossRefGoogle Scholar
  21. 21.
    Tiemblo P, Guzmán J, Riande E, Fernández A, Bosch P (2002) Gas transport properties in chlorosulfonated polyethylene-acrylate based adhesives. Polym Eng Sci 42(6):1131–1140CrossRefGoogle Scholar
  22. 22.
    Ziaud D, Chen L, Ullah I, Wang PK, Javaid AB, Hu C et al (2018) Synthesis and characterization of starch-g-poly(vinyl acetate-co-butyl acrylate) bio-based adhesive for wood application. Int J Biol Macromol 114:1186–1193CrossRefGoogle Scholar
  23. 23.
    Hongping X, Nongyue W, Taoguang Q, Jianguang Y, Yanmei Y, Xiongwei Q et al (2012) Effect of the MMA content on the emulsion polymerization process and adhesive properties of poly(BA-co-MMA-co-AA) latexes. J Appl Polym Sci 123(2):1068–1078CrossRefGoogle Scholar
  24. 24.
    Qie L, Dubé MA (2010) The influence of butyl acrylate/methyl methacrylate/2-hydroxy ethyl methacrylate/acrylic acid latex properties on pressure sensitive adhesive performance. Int J Adhes Adhes 30(7):654–664CrossRefGoogle Scholar
  25. 25.
    Sun S, Li M, Liu A (2013) A review on mechanical properties of pressure sensitive adhesives. Int J Adhes Adhes 41:98–106CrossRefGoogle Scholar
  26. 26.
    Dhal PK, Deshpande A, Babu GN (1982) Pressure sensitive adhesives of acrylic polymers containing functional monomers. Polymer 23(6):937–939CrossRefGoogle Scholar
  27. 27.
    Introduction to adhesion and adhesives. In: Comyn J (ed) Adhesion Science: The Royal Society of Chemistry 1997. p 1–17Google Scholar
  28. 28.
    Akarsu Dülgar C, Serhatlı İE (2018) Synthesis of poly(BA-co-MMA) dispersions having AA/MAA/AAm/MAAm comonomers and the comparison of their effect on adhesive performance. Polym Bull 75(2):877–890CrossRefGoogle Scholar
  29. 29.
    Renata J, Keltoum O, McKenna TF, Dubé MA (2004) Butyl acrylate/methyl methacrylate latexes: adhesive properties. Macromol Symp 206(1):43–56CrossRefGoogle Scholar
  30. 30.
    Ismail H, Zhmad Z, Yew FW (2011) Effect of monomer composition on adhesive performance for waterborne acrylic pressure-sensitive adhesives. J Phys Sci 22(2):51–63Google Scholar
  31. 31.
    Gowmer MD, Shanks RA (2004) The effect of varied monomer composition on adhesive performance and peeling master curves for acrylic pressure-sensitive adhesives. J Appl Polym Sci 93(6):2909–2917CrossRefGoogle Scholar
  32. 32.
    Roberge S, Dubé MA (2006) The effect of particle size and composition on the performance of styrene/butyl acrylate miniemulsion-based PSAs. Polymer 47(3):799–807CrossRefGoogle Scholar
  33. 33.
    Kajtna J, Golob J, Krajnc M (2009) The effect of polymer molecular weight and crosslinking reactions on the adhesion properties of microsphere water-based acrylic pressure-sensitive adhesives. Int J Adhes Adhes 29(2):186–194CrossRefGoogle Scholar
  34. 34.
    Czech Z (2007) Synthesis and cross-linking of acrylic PSA systems. J Adhes Sci Technol 21(7):625–635CrossRefGoogle Scholar
  35. 35.
    Czech Z (2003) Crosslinking of pressure sensitive adhesive based on water-borne acrylate. Polym Int 52(3):347–357CrossRefGoogle Scholar
  36. 36.
    Acton QA (2013) Boron compounds—advances in research and application: 2013 Edn, ScholarlyEditionsGoogle Scholar
  37. 37.
    Ekrem M, Şahin ÖS, Karabulut SE, Avcı A (2018) Thermal stability and adhesive strength of boron nitride nano platelets and carbon nano tube modified adhesives. J Compos Mater 52(11):1557–1565CrossRefGoogle Scholar
  38. 38.
    Yalinkilic MK, Imamura Y, Takahashi M, Demirci Z (1998) Effect of boron addition to adhesive and/or surface coating on fire-retardant properties of particleboard. Wood Fiber Sci 30(4):348–359Google Scholar
  39. 39.
    Çanak TÇ, Kaya K, Serhatlı IE (2014) Boron containing UV-curable epoxy acrylate coatings. Prog Org Coat 77(11):1911–1918CrossRefGoogle Scholar
  40. 40.
    FINAT (2009) FINAT Technical Handbook: Test Methods: FinatGoogle Scholar
  41. 41.
    Diethert A, Ecker K, Peykova Y, Willenbacher N, Müller-Buschbaum P (2011) Tailoring the near-surface composition profiles of pressure-sensitive adhesive films and the resulting mechanical properties. ACS Appl Mater Interfaces 3(6):2012–2021CrossRefGoogle Scholar
  42. 42.
    Kowalski A, Czech Z, Byczyński Ł (2013) How does the surface free energy influence the tack of acrylic pressure-sensitive adhesives (PSAs). J Coat Technol Res 10(6):879–885CrossRefGoogle Scholar
  43. 43.
    Peykova Y, Lebedeva OV, Diethert A, Müller-Buschbaum P, Willenbacher N (2012) Adhesive properties of acrylate copolymers: effect of the nature of the substrate and copolymer functionality. Int J Adhes Adhes 34:107–116CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  • Cansu Akarsu Dulgar
    • 1
    • 2
  • Tuba Çakır Çanak
    • 3
  • İ. Ersin Serhatlı
    • 3
    Email author
  1. 1.Department of Polymer Science and Technology, Graduate School of Science Engineering and TechnologyIstanbul Technical UniversityIstanbulTurkey
  2. 2.Organik Kimya San. ve Tic. A.ŞEyüp, IstanbulTurkey
  3. 3.Department of ChemistryIstanbul Technical UniversityIstanbulTurkey

Personalised recommendations