Advertisement

Polymer Bulletin

, Volume 76, Issue 5, pp 2621–2653 | Cite as

Elaboration of hydroxyapatite nanoparticles and chitosan/hydroxyapatite composites: a present status

  • Djalila BoudemaghEmail author
  • Pierre Venturini
  • Solenne Fleutot
  • Franck Cleymand
Review
  • 89 Downloads

Abstract

Novel formulations of nano-hydroxyapatite (nano-HAp) and nano-HAp/chitosan composites have attracted much attention in these last years. The use of natural chitosan is found to be potential for fabrication of modified nano-HAp with many biomedical applications such as orthopedic, osteoconductive, dental and drug delivery applications. This review summarizes the different techniques employed for the elaboration of HAp nanoparticles and the effect of the incorporation of HAp with chitosan on the fabrication of nano-HAp composite and on their physical properties. We discuss the effects of the reaction conditions such as reaction time, temperature, pH, solvent nature, surfactants, and concentration of reactants on crystallinity, particle size, morphology and properties of nano-HAp composite. The nano-HAp progress and the present status of HAp (either experimental or theoretical results) have been reviewed.

Keywords

HAp nanoparticles Chitosan/HAp nanoparticles Preparation methodology 

References

  1. 1.
    Nunes CR, Simske SJ, Sachdeva R, Woldord LM (1997) Long-term in growth and apposition of porous hydroxyapatite implants. J Biomed Mater Res 36:560–563.  https://doi.org/10.1002/(sici)1097-4636(19970915)36:4%3c560:aid-jbm15%3e3.0.co;2-e CrossRefPubMedGoogle Scholar
  2. 2.
    Vallet-Regi M, Gonsalez-Calbet JM (2004) Calcium phosphates as substitution of bone tissues. Prog Solid State Chem 32:1–31.  https://doi.org/10.1016/j.progsolidstchem.2004.07.001 CrossRefGoogle Scholar
  3. 3.
    Nathanael AJ, Mangalaraj D, Chi Chen P, Ponpandian N (2011) Enhanced mechanical strength of hydroxyapatite nanorods reinforced with polyethylene. J Nanopart Res 13:1841–1853.  https://doi.org/10.1007/s11051-010-9932-3 CrossRefGoogle Scholar
  4. 4.
    Thanigaiarul K, Elayaraja K, Magudapathy P, Nair KGM, Sudarshan M, Krishna JBM, Chakraborty A (2013) Surface modification of nanocrystalline calcium phosphate bioceramic by low energy nitrogen ion implantation. Ceram Int 39:3027–3034.  https://doi.org/10.1016/j.ceramint.2012.09.081 CrossRefGoogle Scholar
  5. 5.
    Nathanael AJ, Hong SI, Mangalaraj D, Ponpandian N, Chen PC (2012) Template-free growth of novel hydroxyapatite nanorings: formation mechanism and their enhanced functional properties. Cryst Growth Des 12:3565–3574.  https://doi.org/10.1021/cg3003959 CrossRefGoogle Scholar
  6. 6.
    LeGros RZ (1991) Calcium phosphates in oral biology and medicine, monographs in oral science, vol 15. Karger, Basel, pp 1–201.  https://doi.org/10.1159/isbn.978-3-318-04021-0 CrossRefGoogle Scholar
  7. 7.
    Elliott JC (2002) Calcium phosphate biominerals. In: Kohn MJ, Rakovan J, Hughes JM (eds) Phosphates: geochemical, geobiological and material importance. Reviews in Mineralogy and Geochemistry, Mineralogical Society of America, Washington, DC, 48: 427–454. ISBN: 0-939950-60-X; ISBN: 13 978-0-939950-60-7Google Scholar
  8. 8.
    Orlovskii VP, Komlev VS, Barinov SM (2002) Hydroxyapatite and hydroxyapatite-based ceramics. Inorg Mater 38:973–984.  https://doi.org/10.1023/A:1020585800572 CrossRefGoogle Scholar
  9. 9.
    Kanno CM, Sanders RL, Flynn SM, Lessard G, Myneni S (2014) Novel apatite-based sorbent for defluoridation: synthesis and sorption characteristics of nano-micro crystalline Hydroxyapatite-coated-limestone. Environ Sci Technol 48:5798–5807.  https://doi.org/10.1021/es405135r (in Press) CrossRefPubMedGoogle Scholar
  10. 10.
    Zhao J, Liu Y, Sun WB, Zhang H (2011) Amorphous calcium phosphate and its application in dentistry. Chem Cent J 5:40.  https://doi.org/10.1186/1752-153x-5-40 CrossRefPubMedPubMedCentralGoogle Scholar
  11. 11.
    Kikuchi M, Itoh S, Ichinose S, Shinomiya K, Tanaka J (2001) Self-organization mechanism in a bone-like hydroxyapatite/collagen nanocomposite synthesized in vitro and its biological reaction in vivo. Biomaterials 22:1705–1711.  https://doi.org/10.1016/s0142-9612(00)00305-7 CrossRefPubMedGoogle Scholar
  12. 12.
    Kaito T, Myoui A, Takaoka K, Saito N, Nishikawa M, Tamai N, Ohgushi H, Yoshikawa H (2005) Potentiation of the activity of bone morphogenetic protein-2 in bone regeneration by a PLA–PEG/hydroxyapatite composite. Biomaterials 26:73–79.  https://doi.org/10.1016/j.biomaterials.2004.02.010 CrossRefPubMedGoogle Scholar
  13. 13.
    Itoh S, Kikuchi M, Koyama Y, Takakuda K, Shinomiya K, Tanaka J (2002) Development of an artificial vertebral body using a novel biomaterial, hydroxyapatite/collagen composite. Biomaterials 23:3919–3926.  https://doi.org/10.1016/s0142-9612(02)00126-6 CrossRefPubMedGoogle Scholar
  14. 14.
    Fu Q, Zhou N, Huang W, Wang D, Zhang L, Li H (2005) Effects of nano HAp on biological and structural properties of glass bone cement. J Biomed Mater Res A 74:156–163.  https://doi.org/10.1002/jbm.a.30322 CrossRefPubMedGoogle Scholar
  15. 15.
    Uskokovic V, Uskokovic DP (2011) Nanosized hydroxyapatite and other calcium phosphates: chemistry of formation and application as drug and gene delivery agents. J Biomed Mater Res B Appl Biomater 96:152–191.  https://doi.org/10.1002/jbm.b.31746 CrossRefPubMedGoogle Scholar
  16. 16.
    Kano S, Yamazaki A, Otsuka R, Akao M, Aoki H (1993) Use of hydroxyapatite small crystals as drug carrier. Drug Deliv Syst 8(6):467–471.  https://doi.org/10.2745/dds.8.467 CrossRefGoogle Scholar
  17. 17.
    Uskokovic V, Dessai TA (2013) Phase composition control of calcium phosphate nanoparticles for tunable drug delivery kinetics and treatment of osteomyelitis part 2: antibacterial and osteoblastic response. J Biomed Mater Res Part A 101:1427–1436.  https://doi.org/10.1002/jbm.a.34437 CrossRefGoogle Scholar
  18. 18.
    Barroug A, Glimcher MJ (2002) Hydroxyapatite crystals as a local delivery system for cisplatin: adsorption and release of cisplatin in vitro. J Orthop Res 20:274–280.  https://doi.org/10.1016/s0736-0266(01)00105-x CrossRefPubMedGoogle Scholar
  19. 19.
    Shinto Y, Uchida A, Korkusuz F, Araki NN, Ono K (1992) Calcium hydroxyapatite ceramic used as a delivery system for antibiotics. J Bone Jt Surg 74:600–604 (PMID: 1320622) CrossRefGoogle Scholar
  20. 20.
    Vallet-Regi M (2001) Ceramics for medical applications. J Chem Soc Dalton Trans.  https://doi.org/10.1039/b007852m CrossRefGoogle Scholar
  21. 21.
    Okada M, Matsumoto T (2015) Synthesis and modification of apatite nanoparticles for use in dental and medical applications. Jpn Dent Sci Rev 51:85–95.  https://doi.org/10.1016/j.jdsr.2015.03.004 CrossRefGoogle Scholar
  22. 22.
    Woo KM, Seo J, Zhang R, Ma PX (2007) Suppression of apoptosis by enhanced protein adsorption on polymer/hydroxyapatite composite scaffolds. Biomaterials 28:2622–2630.  https://doi.org/10.1016/j.biomaterials.2007.02.004 CrossRefPubMedPubMedCentralGoogle Scholar
  23. 23.
    Li Z, Yubao L, Aiping Y, Xuelin P, Xuejiang W, Xiang Z (2005) Preparation and in vitro investigation of chitosan/nano-hydroxyapatite composite used as bone substitute materials. J Mater Sci Mater Med 16:213–219.  https://doi.org/10.1007/s10856-005-6682-3 CrossRefPubMedGoogle Scholar
  24. 24.
    Mekmene O, Quillard S, Rouillon T, Bouler JM, Piot M, Gaucheron F (2009) Effects of pH and Ca/P molar ratio on the quantity and crystalline structure of calcium phosphates obtained from aqueous solutions. Dairy Sci Technol 89:301–316.  https://doi.org/10.1051/dst/2009019 CrossRefGoogle Scholar
  25. 25.
    Webster TJ, Ergun C, Doremus RH, Siegel RW, Bizios R (2000) Enhanced functions of osteoblasts on nanophase ceramics. Biomaterials 21:1803–1810.  https://doi.org/10.1016/s0142-9612(00)00075-2 CrossRefPubMedGoogle Scholar
  26. 26.
    Anitha P, Haresh MP (2013) Comprehensive review of preparation methodologies of nanohydroxyapatite. J Environ Nanotechnol 4:101–121.  https://doi.org/10.13074/jent.2013.12.132058 CrossRefGoogle Scholar
  27. 27.
    Sadat-Shojai M, Khorasani MT, Dinpanah-Khoshdargi E, Jamshidi A (2013) Synthesis methods for nanosized hydroxyapatite with diverse structures. Acta Biomater 9:7591–7621.  https://doi.org/10.1016/j.actbio.2013.04.012 CrossRefPubMedGoogle Scholar
  28. 28.
    Earl JS, Wood DJ, Milne SJ (2006) Hydrothermal synthesis of hydroxyapatite. J Phys Conf Ser 26:268–271.  https://doi.org/10.1088/1742-6596/26/1/064 CrossRefGoogle Scholar
  29. 29.
    Zhang F, Zhou ZH, Yang SP, Mao LH, Chen HM, Yu XB (2005) Hydrothermal synthesis of hydroxyapatite nanorods in the presence of anionic starburst dendrimer. Mater Lett 59:1422–1425.  https://doi.org/10.1016/j.matlet.2004.11.058 CrossRefGoogle Scholar
  30. 30.
    Parhi P, Ramanan A, Ray AR (2004) A convenient route for the synthesis of hydroxyapatite through a novel microwave-mediated metathesis reaction. Mater Lett 58:3610–3612.  https://doi.org/10.1016/j.matlet.2004.06.056 CrossRefGoogle Scholar
  31. 31.
    Arita IH, Wilkinson DS, Mondragon MA, Castano VM (1995) Chemistry and sintering behaviour of thin hydroxyapatite ceramics with controlled porosity. Biomaterials 16:403–408.  https://doi.org/10.1016/0142-9612(95)98858-b CrossRefPubMedGoogle Scholar
  32. 32.
    Furuzono T, Walsh D, Yasuda S, Sato K, Tanaka J, Kishida A (2005) Preparation of plated β-tricalcium phosphate containing hydroxyapatite for use in bonded inorganic–organic composites. J Mater Sci 40:2595–2597.  https://doi.org/10.1007/s10853-005-2083-8 CrossRefGoogle Scholar
  33. 33.
    Dorozhkin SV (2010) Nanosized and nanocrystalline calcium orthophosphates. Acta Biomater 6:715–734.  https://doi.org/10.1016/j.actbio.2009.10.031 CrossRefPubMedGoogle Scholar
  34. 34.
    Dorozhkin SV (2010) Amorphous calcium orthophosphates. Acta Biomater 6:4457–4475.  https://doi.org/10.1016/j.actbio.2010.06.031 CrossRefPubMedGoogle Scholar
  35. 35.
    He WH, Tao JH, Pan HH, Xu XR, Tang RK (2010) A size-controlled synthesis of hollow apatite nanospheres at water–oil interfaces. Chem Lett 39:674–675.  https://doi.org/10.1246/cl.2010.674 CrossRefGoogle Scholar
  36. 36.
    Katsuki H, Furuta S, Komarneni S (1999) Microwave-versus conventional hydrothermal synthesis of Hydroxyapatite crystals from gypsum. J Am Ceram Soc 82:2257–2259.  https://doi.org/10.1111/j.1151-2916.1999 CrossRefGoogle Scholar
  37. 37.
    Sarig S, Kahana F (2002) Rapid formation of nanocrystalline apatite. J Cryst Growth 237–239:55–59.  https://doi.org/10.1016/s0022-0248(01)01850-4 CrossRefGoogle Scholar
  38. 38.
    Pramanik S, Agarwal AK, Rai KN, Garg A (2007) Development of high strength hydroxyapatite by solid-state-sintering process. Ceram Int 33:419–426.  https://doi.org/10.1016/j.ceramint.2005.10.025 CrossRefGoogle Scholar
  39. 39.
    Han JK, Song HY, Saito F, Lee BT (2006) Synthesis of high purity nano-sized hydroxyapatite powder by microwave-hydrothermal method. Mater Chem Phys 99:235–239.  https://doi.org/10.1016/j.matchemphys.2005.10.017 CrossRefGoogle Scholar
  40. 40.
    Wei M, Ruys AJ, Milthorpe BK, Sorrell CC (1999) Solution ripening of Hydroxyapatite nanoparticles: effects on electrophoretic deposition. J Biomed Mater Res 45:11–19.  https://doi.org/10.1002/(sici)1097-4636(199904)45:1%3c11:AID-JBM2%3e3.0.CO;2-7 CrossRefPubMedGoogle Scholar
  41. 41.
    Chen ZT, Gao L (2008) A new route toward ZnO hollow spheres by a base-erosion mechanism. Cryst Growth Des 8:460–464.  https://doi.org/10.1021/cg070277b CrossRefGoogle Scholar
  42. 42.
    Bigi A, Fini M, Bracci B, Boanini E, Torricelli P, Giavaresi G, Aldini NN, Facchini A, Sbaiz F, Giardino R (2008) The response of bone to nanocrystalline hydroxyapatite-coated Ti13Nb11Zr alloy in an animal model. Biomaterials 29:1730–1736.  https://doi.org/10.1016/j.biomaterials.2007.12.011 CrossRefPubMedGoogle Scholar
  43. 43.
    Khalid M, Mujahid M, Amin S, Rawat RS, Nusair A, Deen GR (2013) Effect of surfactant and heat treatment on morphology, surface area and crystallinity in hydroxyapatite nanocrystals. Ceram Int 39:39–50.  https://doi.org/10.1016/j.ceramint.2012.05.090 CrossRefGoogle Scholar
  44. 44.
    Murray MGS, Wang J, Ponton CB, Marquis PM (1995) An improvement in processing of hydroxyapatite ceramics. J Mater Sci 30:3061–3074.  https://doi.org/10.1007/bf01209218 CrossRefGoogle Scholar
  45. 45.
    Riman RE, Suchanek WL, Byrappa K, Chen CW, Shuk P, Oakes CS (2002) Solution synthesis of hydroxyapatite designer particulates. Solid State Ion 151:393–402.  https://doi.org/10.1016/s0167-2738(02)00545-3 CrossRefGoogle Scholar
  46. 46.
    Cho JS, Kang YC (2008) Nano-sized Hydroxyapatite powders prepared by flame spray pyrolysis. J Alloys Compd 464:282–287.  https://doi.org/10.1016/j.jallcom.2007.09.092 CrossRefGoogle Scholar
  47. 47.
    Hing KA, Best SM, Tanner KE, Bonfield W, Revell PA (1999) Quantification of bone in growth within bone-derived porous hydroxyapatite implants of varying density. J Mater Sci Mater Med 10:663–670.  https://doi.org/10.1023/a:1008900127475 CrossRefPubMedGoogle Scholar
  48. 48.
    Kong L, Gao Y, Cao W, Gong Y, Zhao N, Zhang X (2005) Preparation and characterization of nano-hydroxyapatite/chitosan composite scaffolds. J Biomed Mater Res Part A 75:275–282.  https://doi.org/10.1002/jbm.a.30414 CrossRefGoogle Scholar
  49. 49.
    Venkatesan J, Kim SK (2012) Nanostructured hydroxyapatite-chitosan composite biomaterial for bone tissue engineering. Adv Mater Res 584:212–216.  https://doi.org/10.4028/www.scientific.net/AMR.584.212 CrossRefGoogle Scholar
  50. 50.
    Shen XY, Chen L, Cai XA, Tong T, Tong H, Hu JM (2011) A Novel method for the fabrication of homogeneous hydroxyapatite-collagen nanocomposite and nanocomposite scaffold with hierarchical porosity. J Mater Sci Mater Med 22:299–305.  https://doi.org/10.1007/s10856-010-4199-x CrossRefPubMedGoogle Scholar
  51. 51.
    Sakthivel P, Ragu A (2015) Synthesis and characterization of nano hydroxyapatite with polymer matrix nano composite for biomedical applications. Int J Chem Environ Biol Sci 3:2320–4087. ISSN: 2320–4087Google Scholar
  52. 52.
    Azevedo MC, Reis RL, Claase MB, Grijpma DW, Feijen J (2003) Development and properties of polycaprolactone-hydroxyapatite composite biomaterials. J Mater Sci Mater Med 14:103–107.  https://doi.org/10.1023/a:1022051326282 CrossRefPubMedGoogle Scholar
  53. 53.
    Pighinelli L, Kucharska M (2013) Chitosan–hydroxyapatite composites. Carbohyd Polym 93:256–262.  https://doi.org/10.1016/j.carbpol.2012.06.004 CrossRefGoogle Scholar
  54. 54.
    Chen F, Wang ZC, Lin CJ (2002) Preparation and characterization of nano-sized hydroxyapatite particles and Hydroxyapatite/chitosan nano-composite for use in biomedical materials. Mater Lett 57:858–861.  https://doi.org/10.1016/s0167-577x(02)00885-6 CrossRefGoogle Scholar
  55. 55.
    Murugan R, Ramakrishna S (2004) Bioresorbable composite bone paste using polysaccharide based nano hydroxyapatite. Biomaterials 25:3829–3835.  https://doi.org/10.1016/j.biomaterials.2003.10.016 CrossRefPubMedGoogle Scholar
  56. 56.
    Agnihotri SA, Mallikarjuna NN, Aminabhavi TM (2004) Recent advances on chitosan based micro- and nanoparticles in drug delivery. J Control Release 100:5–28.  https://doi.org/10.1016/j.jconrel.2004.08.010 CrossRefPubMedGoogle Scholar
  57. 57.
    Croisier F, Jérôme C (2013) Chitosan-based biomaterials for tissue engineering. Eur Polym J 49:780–792.  https://doi.org/10.1016/j.eurpolymj.2012.12.009 CrossRefGoogle Scholar
  58. 58.
    Lahiji A, Sohrabi A, Hungerford DS, Frondoza CG (2000) Chitosan supports the expression of extracellular matrix proteins in human osteoblasts and chondrocytes. J Biomed Mater Res 51:586–595.  https://doi.org/10.1002/1097-4636(20000915)51:4%3c586:AID-JBM6%3e3.0.CO;2-S CrossRefPubMedGoogle Scholar
  59. 59.
    Risbud M, Endres M, Ringe J, Bhonde R, Sittinger M (2001) Biocompatible hydrogel supports the growth of respiratory epithelial cells: possibilities in tracheal tissue engineering. J Biomed Mater Res 56:120–127.  https://doi.org/10.1002/1097-4636(200107)56:1%3c120:aid-jbm1076%3e3.0.co;2-w CrossRefPubMedGoogle Scholar
  60. 60.
    Ge Z, Baguenard S, Lim LY, Wee A, Khor E (2004) Hydroxyapatite–chitin materials as potential tissue engineered bone substitutes. Biomaterials 25:1049–1058.  https://doi.org/10.1016/s0142-9612(03)00612-4 CrossRefPubMedGoogle Scholar
  61. 61.
    Katti KS, Katti DR, Dash R (2008) Synthesis and characterization of a novel chitosan–montmorillonite–hydroxyapatite nanocomposite for bone tissue engineering. Biomed Mater 3:034122.  https://doi.org/10.1088/1748-6041/3/3/034122 CrossRefPubMedGoogle Scholar
  62. 62.
    Li F, Liu Y, Ding Y, Xie QA (2014) new injectable in situ forming hydroxyapatite and thermosensitive chitosan gel promoted by Na2CO3. Soft Matter 10:2292–2303.  https://doi.org/10.1039/c3sm52508b CrossRefPubMedGoogle Scholar
  63. 63.
    Liu H, Peng H, Wu Y, Zhang C, Cai Y, Xu G, Li Q, Chen X, Ji J, Zhang Y, OuYang HW (2013) The promotion of bone regeneration by nanofibrous hydroxyapatite/chitosan scaffolds by effects on integrin-BMP/Smad signaling pathway in BMSCs. Biomaterials 34:4404–4417.  https://doi.org/10.1016/j.biomaterials.2013.02.048 CrossRefPubMedGoogle Scholar
  64. 64.
    Klokkevold PR, Subar P, Fukayama H, Bertolami CN (1992) Effect of chitosan on lingual hemostasis in rabbits with platelet dysfunction induced by epoprostenol. J Oral Maxillofac Surg 50:41–45.  https://doi.org/10.1016/0278-2391(92)90194-5 CrossRefPubMedGoogle Scholar
  65. 65.
    Madihally SV, Matthew HWT (1999) Porous chitosan scaffolds for tissue engineering. Biomaterials 20:1133–1142.  https://doi.org/10.1016/s0142-9612(99)00011-3 CrossRefPubMedGoogle Scholar
  66. 66.
    Yang PP, Quan ZW, Li CX, Kang XJ, Lian HZ, Lin J (2008) Bioactive, luminescent and mesoporous europium-doped hydroxyapatite as a drug carrier. Biomaterials 29:4341–4347.  https://doi.org/10.1016/j.biomaterials.2008.07.042 CrossRefPubMedGoogle Scholar
  67. 67.
    Kuhne JH, Bartl R, Frisch B, Hammer C, Jansson V, Zimmer M (1994) Bone formation in coralline hydroxyapatite: effects of pore size studied in rabbits. Acta Orthop Scand 65:246–252.  https://doi.org/10.3109/17453679408995448 CrossRefPubMedGoogle Scholar
  68. 68.
    Yamaguchi I, Tokuchi K, Fukuzaki H, Koyama Y, Takakuda K, Monma H, Tanaka J (2001) Preparation and mechanical properties of chitosan/hydroxyapatite nanocomposites. Key Eng Mater 192–195:673–676.  https://doi.org/10.4028/www.scientific.net/KEM.192-195.673 CrossRefGoogle Scholar
  69. 69.
    Teng SH, Lee EJ, Yoon BH, Shin DS, Kim HE, Oh JS (2009) Chitosan-nanohydroxyapatite composite membranes via dynamic filtration for guided bone regeneration. J Biomed Mater Res A 88:569–580.  https://doi.org/10.1002/jbm.a.31897 CrossRefPubMedGoogle Scholar
  70. 70.
    López-Macipe A, Gómez-Morales J, Rodriguez-Clemente R (1998) Nanosized hydroxyapatite precipitation from homogeneous calcium/citrate/phosphate solutions using microwave and conventional heating. Adv Mater 10:49–53.  https://doi.org/10.1002/(sici)1521-4095(199801)10:1%3c49:aid-adma49%3e3.0.co;2-r CrossRefGoogle Scholar
  71. 71.
    Ma MG, Zhu JF (2009) Solvothermal synthesis and characterization of hierarchically nanostructured hydroxyapatite hollow spheres. Eur J Inorg Chem 36:5522–5526.  https://doi.org/10.1002/ejic.200900839 CrossRefGoogle Scholar
  72. 72.
    Fu H, Rahaman MN, Day DE, Brown RF (2011) Hollow Hydroxyapatite microspheres as a device for controlled delivery of proteins. J Mater Sci Mater Med 22:591–597.  https://doi.org/10.1007/s10856-011-4250-6 CrossRefGoogle Scholar
  73. 73.
    Chaudhry AA, Haque S, Kellici S et al (2006) Instant nano-hydroxyapatite: a continuous and rapid hydrothermal synthesis. Chem Commun 4(21):2286–2288.  https://doi.org/10.1039/b518102j CrossRefGoogle Scholar
  74. 74.
    Chaudhry AA, Yan H, Gong K, Inam F, Reece Viola G MJ, Goodall JBM (2011) High-strength nanograined and translucent hydroxyapatite monoliths via continuous hydrothermal synthesis and optimized spark plasma sintering. Acta Biomater 7(2):791–799.  https://doi.org/10.1016/j.actbio.2010.09.029 CrossRefPubMedGoogle Scholar
  75. 75.
    Yeong KCB, Wang J, Ng SC (2001) Mechanochemical synthesis of nanocrystalline hydroxyapatite from CaO and CaHPO4. Biomaterials 22:2705–2712.  https://doi.org/10.1016/s0142-9612(00)00257-x CrossRefGoogle Scholar
  76. 76.
    Ramli RA, Adnan R, Bakar MA, Masudi SM (2011) Synthesis and characterization of pure nanoporous hydroxyapatite. J Phys Sci 22:25–37 (PMID:1320622) Google Scholar
  77. 77.
    Zhu J, Kong D, Zhang Y, Yao N, Tao Y, Qiu T (2011) The influence of conditions on synthesis hydroxyapatite by chemical precipitation method. Mater Sci Eng 18:062023.  https://doi.org/10.1088/1757-899x/18/6/062023 CrossRefGoogle Scholar
  78. 78.
    Mendes LC, Ribeiro GL, Marques RC (2012) In situ hydroxyapatite synthesis: influence of collagen on its structural and morphological characteristic. Mater Sci Appl 3:580–586.  https://doi.org/10.4236/msa.2012.38083 CrossRefGoogle Scholar
  79. 79.
    Vijayalakshmi U, Rajeswari S (2012) Influence of process parameters on the sol–gel synthesis of nanohydroxyapatite using various phosphorus precursors. J Sol Gel Sci Technol 63:45–55.  https://doi.org/10.1007/s10971-012-2762-2 CrossRefGoogle Scholar
  80. 80.
    Jillavenkatesa A, Condrate RA (1998) Sol–gel processing of hydroxyapatite. J Mater Sci 33:4111–4119.  https://doi.org/10.1023/a:1004436732282 CrossRefGoogle Scholar
  81. 81.
    Ramachandra Rao R, Roopa HN, Kannan TS (1997) Solid state synthesis and thermal stability of HAP and HAP-beta-TCP composite ceramic powders. J Mater Sci Mater Med 8:511–518.  https://doi.org/10.1023/a:1018586412270 CrossRefGoogle Scholar
  82. 82.
    Kothapalli CR, Wei M, Legeros RZ, Shaw MT (2005) Influence of temperature and aging time on HAp synthesized by the hydrothermal method. J Mater Sci Mater Med 16:441–446.  https://doi.org/10.1007/s10856-005-6984-5 CrossRefPubMedGoogle Scholar
  83. 83.
    Cihlar J, Castkova K (2002) Direct synthesis of nanocrystalline hydroxyapatite by hydrothermal hydrolysis of alkylphosphates. Monatshefte für Chemie/Chem Mon 133:761–771.  https://doi.org/10.1007/s007060200048 CrossRefGoogle Scholar
  84. 84.
    Liu J, Ye X, Wang H, Zhu M, Wang B, Yan H (2003) The influence of pH and temperature on the morphology of hydroxyapatite synthesized by hydrothermal method. Ceram Int 29:629–633.  https://doi.org/10.1016/s0272-8842(02)00210-9 CrossRefGoogle Scholar
  85. 85.
    Du X, Chu Y, Xing S, Dong L (2009) Hydrothermal synthesis of calcium hydroxyapatite nanorods in the presence of PVP. J Mater Sci 44:6273–6279.  https://doi.org/10.1007/s10853-009-3860-6 CrossRefGoogle Scholar
  86. 86.
    Kumar V, Prakash K, Cheang P, Khor K (2004) Temperature driven morphological changes of chemically precipitated hydroxyapatite nanoparticles. Langmuir 20:5196–5200.  https://doi.org/10.1021/la049304f CrossRefPubMedGoogle Scholar
  87. 87.
    Wang A, Liu D, Yin H, Wu H, Wada Y, Ren M, Jiang T, Chen X, Xu Y (2007) Size-controlled synthesis of hydroxyapatite nanorods by chemical precipitation in the presence of organic modifiers. Mater Sci Eng C 27:865–869.  https://doi.org/10.1016/j.msec.2006.10.001 CrossRefGoogle Scholar
  88. 88.
    Ioku K, Yamauchi S, Fujimori H, Goto S, Yoshimura M (2002) Hydrothermal preparation of fibrous apatite and apatite sheet. Solid State Ion 151:147–150.  https://doi.org/10.1016/s0167-2738(02)00593-3 CrossRefGoogle Scholar
  89. 89.
    Zhang S, Gonsalves K (1997) Preparation and characterization of thermally stable nanohydroxyapatite. J Mater Sci Mater Med 8:25–28.  https://doi.org/10.1023/a:1018586128257 CrossRefPubMedGoogle Scholar
  90. 90.
    Wang YJ, Chen JD, Wei K, Zhang SH, Wang XD (2006) Surfactant-assisted synthesis of hydroxyapatite particles. Mater Lett 60:3227–3231.  https://doi.org/10.1016/j.matlet.2006.02.077 CrossRefGoogle Scholar
  91. 91.
    Wang Y, Zhang S, Wei K, Zhao N, Chen J, Wang X (2006) Hydrothermal synthesis of hydroxyapatite nanopowders using cationic surfactant as a template. Mater Lett 60:1484–1487.  https://doi.org/10.1016/j.matlet.2005.11.053 CrossRefGoogle Scholar
  92. 92.
    Jokanovic V, Izvonar D, Dramicanin MD et al (2006) Hydrothermal synthesis and nanostructured of carbonated calcium Hydroxyapatite. J Mater Sci Mater Med 17:539–546.  https://doi.org/10.1007/s10856-006-8937-z CrossRefPubMedGoogle Scholar
  93. 93.
    Chen JD, Wang YJ, Wei K, Zhang SH, Shi XT (2007) Self-organization of hydroxyapatite nanorods through oriented attachment. Biomaterials 28:2275–2280.  https://doi.org/10.1016/j.biomaterials.2007.01.033 CrossRefPubMedGoogle Scholar
  94. 94.
    Jinawath S, Pongkao D, Yoshimura M (2002) Hydrothermal synthesis of hydroxyapatite from natural source. J Mater Sci Mater Med 13:491–494.  https://doi.org/10.1023/a:1014774923619 CrossRefPubMedGoogle Scholar
  95. 95.
    Yan L, Li Y, Deng ZX, Zhuang J, Sun X (2001) Surfactant-assisted hydrothermal synthesis of hydroxyapatite nanorods. Int J Inorg Mater 3:633–637.  https://doi.org/10.1016/s1466-6049(01)00164-7 CrossRefGoogle Scholar
  96. 96.
    Abdel-Aal EA, El-Midany AA, El-Shall H (2008) Mechanochemical–hydrothermal preparation of nano-crystallite hydroxyapatite using statistical design. Mater Chem Phys 112:202–207.  https://doi.org/10.1016/j.matchemphys.2008.05.053 CrossRefGoogle Scholar
  97. 97.
    Coreno AJ, Coreno AO, Cruz RJJ, Rodriguez CC (2005) Mechanochemical synthesis of nanocrystalline carbonate-substituted hydroxyapatite. Opt Mater 27:1281–1285.  https://doi.org/10.1016/j.optmat.2004.11.025 CrossRefGoogle Scholar
  98. 98.
    Nakamura S, Isobe T, Senna M (2001) Hydroxyapatite nano sol prepared via a mechanochemical route. J Nanopart Res 3:57–61.  https://doi.org/10.1023/a:1011407814795 CrossRefGoogle Scholar
  99. 99.
    Nasiri Tabrizi B, Honarmandi P, Ebraihimi-Kahrizsangi R, Honarmandi P (2009) Synthesis of nanosize single-crystal hydroxyapatite via mechanochemical method. Mater Lett 63:543–546.  https://doi.org/10.1016/j.matlet.2008.11.030 CrossRefGoogle Scholar
  100. 100.
    Ota Y, Iwashita T, Kasuga T, Abe Y (1998) Novel preparation method of hydroxyapatite fibers. J Am Ceram Soc 81:1665–1668.  https://doi.org/10.1111/j.1151-2916.1998.tb02529.x CrossRefGoogle Scholar
  101. 101.
    Rhee SH (2002) Synthesis of hydroxyapatite via mechanochemical treatment. Biomaterials 23:1147–1152.  https://doi.org/10.1016/s0142-9612(01)00229-0 CrossRefPubMedGoogle Scholar
  102. 102.
    Suchanek WL, Byrappa K, Shuk P, Riman RE, Janas VF, TenHuisen KS (2004) Preparation of magnesium-substituted hydroxyapatite powders by the mechanochemical–hydrothermal method. Biomaterials 25:4647–4657.  https://doi.org/10.1016/j.biomaterials.2003.12.008 CrossRefPubMedGoogle Scholar
  103. 103.
    Chu CL, Lin PH, Dong YS, Guo DY (2002) Influences of citric acid as a chelating reagent on the characteristics of nanophase hydroxyapatite powders fabricated by a sol–gel method. J Mater Sci Lett 21:1793–1795.  https://doi.org/10.1023/a:1020997510289 CrossRefGoogle Scholar
  104. 104.
    Bezzi G, Celotti G, Landi E et al (2003) A novel sol–gel technique for hydroxyapatite preparation. Mater Chem Phys 78:816–824.  https://doi.org/10.1016/s0254-0584(02)00392-9 CrossRefGoogle Scholar
  105. 105.
    Liu Q, De Wijin J, Van Blitterswijk CA (1997) Nano-apatite/polymer composites: mechanical and physicochemical characteristics. Biomaterials 18:1263–1270.  https://doi.org/10.1016/s0142-9612(97)00069-0 CrossRefPubMedGoogle Scholar
  106. 106.
    Lett JA, Ravichandran K, Sundareswari M (2015) The study on the synthetic methodologies for manoeuvring the morphology crystallinity and particle size of hydroxyapatite. J Chem Pharm Res 7:231–239. ISSN: 0975-7384Google Scholar
  107. 107.
    Bouyer E, Gitzhofer F, Boulos MI (2000) Morphological study of hydroxyapatite nanocrystal suspension. J Mater Sci Mater Med 11:523–531.  https://doi.org/10.1023/a:1008918110156 CrossRefPubMedGoogle Scholar
  108. 108.
    Hench LL, Wilson J (1993) An introduction to bioceramics. Advanced series in ceramics, vol 1. World Scientific Publishing, p 125. ISBN: 978-981-4317-35-1Google Scholar
  109. 109.
    Osaka A, Miura Y, Takeuchi K, Asada M, Takahashi K (1991) Calcium apatite prepared from calcium hydroxide and orthophosphoric acid. J Mater Sci Mater Med.  https://doi.org/10.1007/bf00701687 CrossRefGoogle Scholar
  110. 110.
    Verwilghen C, Chkir M, Rio S, Nzihou A, Sharrock P, Depelsenaire G (2009) Convenient conversion of calcium carbonate to hydroxyapatite at ambient pressure. Mater Sci Eng C 29:771–773.  https://doi.org/10.1016/j.msec.2008.07.007 CrossRefGoogle Scholar
  111. 111.
    Bonel G, Heughebaert JC, Heughebaert M et al (1988) Apatitic calcium orthophosphates and related compounds for biomaterials preparation. Bioceramics 523:115–130.  https://doi.org/10.1111/j.1749-6632.1988.tb38506.x CrossRefGoogle Scholar
  112. 112.
    Hayek E, Newesely H (1963) Pentacalcium monohydroxyorthophosphate (hydroxylapatite). Inorg Synth 7:63–65.  https://doi.org/10.1002/9780470132388.ch17 CrossRefGoogle Scholar
  113. 113.
    Hayek E, Stadlmann W (1955) Preparation of pure hydroxyapatite for adsorption uses. Angew Chem 67:327CrossRefGoogle Scholar
  114. 114.
    Liu C, Huang Y, Shen W, Cui J (2001) Kinetics of hydroxyapatite precipitation at pH 10–11. Biomaterials 22:301–306.  https://doi.org/10.1016/s0142-9612(00)00166-6 CrossRefPubMedGoogle Scholar
  115. 115.
    Raynaud S, Champion E, Bernache-Assollant D, Thomas P (2002) Calcium phosphate apatites with variable Ca/P atomic ratio I. Synthesis, characterisation and thermal stability of powders. Biomaterials 23:1065–1072.  https://doi.org/10.1016/s0142-9612(01)00218-6 CrossRefPubMedGoogle Scholar
  116. 116.
    Rodriguez-Lorenzo LM, Vallet-Regi M, Ferreira JMF (2001) Fabrication of hydroxyapatite bodies by uniaxial pressing from a precipitated powder. Biomaterials 22:583–588.  https://doi.org/10.1016/s0142-9612(00)00218-0 CrossRefPubMedGoogle Scholar
  117. 117.
    Arends J, Christoffersen J, Christoffersen MR, Eckert H, Fowler BO, Heughebaert JC, Nan-collas GH, Yesinowski JP, Zawacki SJ (1987) A calcium hydroxyapatite precipitated from an aqueous solution: an international multimethod analysis. J Cryst Growth 84:515–532.  https://doi.org/10.1016/0022-0248(87)90284-3 CrossRefGoogle Scholar
  118. 118.
    Kong LB, Ma J, Boey F (2002) Nanosized hydroxyapatite powders derived from co-precipitation process. J Mater Sci 37:1131–1134.  https://doi.org/10.1023/A:101435503125 CrossRefGoogle Scholar
  119. 119.
    Islam M, Mishra CP, Patel R (2010) Physicochemical characterization of hydroxyapatite and its application towards removal of nitrate from water. J Environ Manage 91:1883–1891.  https://doi.org/10.1016/j.jenvman.2010.04.013 CrossRefPubMedGoogle Scholar
  120. 120.
    Salimi MN, Bridson RH, Grover LM, Leeke GA (2012) Effect of processing conditions on the formation of hydroxyapatite nanoparticles. Powder Technol 218:109–118.  https://doi.org/10.1016/j.powtec.201.11.049 CrossRefGoogle Scholar
  121. 121.
    Wang PP, Li CH, Gong HY, Jiang XR, Li KX (2010) Effects of synthesis conditions on the morphology of hydroxyapatite nanoparticles produced by wet chemical process. Powder Technol 203:315–321.  https://doi.org/10.1016/j.powtec.2010.05.023 CrossRefGoogle Scholar
  122. 122.
    Koutsopoulos S (2002) Synthesis and characterization of hydroxyapatite crystals: a review study on the analytical methods. J Biomed Mater Res 62:600–612.  https://doi.org/10.1002/jbm.10280 CrossRefPubMedGoogle Scholar
  123. 123.
    Zanotto A, Saladino ML, Martino DC, Caponetti E (2012) Influence of temperature on calcium hydroxyapatite nanopowders. Adv Nanopart 1:21–28.  https://doi.org/10.4236/anp.2012.13004p CrossRefGoogle Scholar
  124. 124.
    Manoj M, Subbiah R, Mangalaraj D, Ponpandian N, Viswanathan C, Park K (2015) Influence of growth parameters on the formation of hydroxyapatite (HAp) nanostructures and their cell viability studies. Nanobiomedicine 2:2.  https://doi.org/10.5772/60116 CrossRefPubMedPubMedCentralGoogle Scholar
  125. 125.
    Pang YX, Bao X (2003) Influence of temperature, ripening time and calcination on the morphology and crystallinity of hydroxyapatite nanoparticles. J Eur Ceram Soc 23:1697–1704.  https://doi.org/10.1016/s0955-2219(02)00413-2 CrossRefGoogle Scholar
  126. 126.
    Saeri MR, Afshar A, Ghorbani M, Ehsani N, Sorrell CC (2003) The wet precipitation process of hydroxyapatite. Mater Lett 57:4064–4069.  https://doi.org/10.1016/s0167-577x(03)00266-0 CrossRefGoogle Scholar
  127. 127.
    Angelescu N, Ungureanu DN, Anghelina FV (2011) Synthesis and characterization of hydroxyapatite obtained in different experimental conditions. Sci Bull Valahia Univ Mater Mech 6:15–18Google Scholar
  128. 128.
    Zhang Y, Zhu J, Xu Z, Zhang X, Ren Y (2014) Effects of synthetic conditions on morphology of hydroxyapatite by chemical precipitation method. Sci Afr J Sci Issues Res Essays 2:307–313Google Scholar
  129. 129.
    Zhang Y, Lu J (2007) A simple method to tailor spherical nanocrystal hydroxyapatite at low temperature. J Nanopart Res 9:589–594.  https://doi.org/10.1007/s11051-006-9177-3 CrossRefGoogle Scholar
  130. 130.
    Pretto M, Costa AL, Landi E, Tampieri A, Galassi C (2003) Dispersing behavior of hydroxyapatite powders produced by wet-chemical synthesis. J Am Ceram Soc 86:1534–1539.  https://doi.org/10.1111/j.1151-2916.2003.tb03510.x CrossRefGoogle Scholar
  131. 131.
    Liu Y, Hou D, Wang G (2004) A simple wet chemical synthesis and characterization of hydroxyapatite nanorods. Mater Chem Phys 86:69–73.  https://doi.org/10.1016/j.matchemphys.2004.02.009 CrossRefGoogle Scholar
  132. 132.
    Wu Y, Bose S (2005) Nanocrystalline hydroxyapatite: micelle templated synthesis and characterization. Langmuir 21:3232–3234.  https://doi.org/10.1021/la046754z CrossRefPubMedGoogle Scholar
  133. 133.
    Yao J, Tjandra W, Chen YZ, Tam KC, Ma J, Soh B (2003) Hydroxyapatite nanostructure material derived using cationic surfactant as a template. J Mater Chem 13:3053–3057.  https://doi.org/10.1039/b308801d CrossRefGoogle Scholar
  134. 134.
    Salarian M, Solati-Hashjin M, Shafiei SS, Goudarzi A, Salarian R, Nemati A (2009) Surfactant-assisted synthesis and characterization of hydroxyapatite nanorods under hydrothermal conditions. Mater Sci Pol 27:961–972Google Scholar
  135. 135.
    Shanthi PMSL, Ashok M, Balasubramanian T, Riyasdeen A, Akbarsha MA (2009) Synthesis and characterization of nano-hydroxyapatite at ambient temperature using cationic surfactant. Mater Lett 63:2123–2125.  https://doi.org/10.1016/j.matlet.2009.07.008 CrossRefGoogle Scholar
  136. 136.
    Coelho JM, Moreira JA, Almeida A, Monteiro FJ (2010) Synthesis and characterization of HAp nanorods from a cationic surfactant template method. J Mater Sci Mater Med 21:2543–2549.  https://doi.org/10.1007/s0856-010-4122-5 CrossRefPubMedGoogle Scholar
  137. 137.
    Tari NE, Motlagh MMK, Sohrabi B (2011) Synthesis of hydroxyapatite particles in cationic mixed surfactants template. Mater Chem Phys 131:132–135.  https://doi.org/10.1016/j.matchemphys.2011.07.078 CrossRefGoogle Scholar
  138. 138.
    Ma T, Xia Z, Liao L (2011) Effect of reaction systems and surfactant additives on the morphology evolution of hydroxyapatite nanorods obtained via a hydrothermal route. Appl Surf Sci 257:4384–4388.  https://doi.org/10.1016/j.apsusc.2010.12.067 CrossRefGoogle Scholar
  139. 139.
    Kolodziejczak-Radzimska A, Samuel M, Paukszta D, Piasecki A, Jesionowski T (2014) Synthesis of hydroxyapatite in the presence of anionic sufractant. Physicochem Probl Miner Process 50:225–236.  https://doi.org/10.5277/ppmp140119 CrossRefGoogle Scholar
  140. 140.
    Alobeedallaha H, Ellis JL, Rohanizadehc R, Costera H, Dehghania F (2011) Preparation of nanostructured hydroxyapatite in organic solvents for clinical applications. Trends Biomater Artif Organs 25(1):12–19. http://www.sbaoi.org Google Scholar
  141. 141.
    Okuyama K, Noguchi K, Hanafusa Y, Osawa K, Ogawa K (1999) Structural study of anhydrous tendon chitosan obtained via chitosan/acetic complex. Int J Biol Macromol 26:285–293.  https://doi.org/10.1016/s0141-8130(99)00095-1 CrossRefPubMedGoogle Scholar
  142. 142.
    Ogawa K, Hirano S, Miyanishi T, Yui T, Watanabe T (1984) New polymorph of chitosan. Macromolecules 17:973–975.  https://doi.org/10.1021/ma00134a076 CrossRefGoogle Scholar
  143. 143.
    Lin YL, Khor E, Ling CE (1999) Effects of dry heat and saturated steam on the physical properties of chitosan. J Biomed Mater Res 48:111–116.  https://doi.org/10.1002/(sici)1097-4636(1999)48:2%3c111:aid-jbm3%3e3.0.co;2-w CrossRefGoogle Scholar
  144. 144.
    Kashiwazaki H, Yamaguchi K, Harada N, Akazawa T, Murata M, Iizuka T, Ikoma T, Tanaka J, Inoue N (2010) In vivo evaluation of a novel chitosan/HAp composite biomaterial as a carrier of rhBMP-2. J Hard Tissue Biol Netw Assoc 19:181–186.  https://doi.org/10.2485/jhtb.19.181 CrossRefGoogle Scholar
  145. 145.
    Yamaguchi I, Itoh S, Suzuki M, Osaka A, Tanaka J (2003) The chitosan prepared from crab tendons: II. The chitosan/apatite composites and their application to nerve regeneration. Biomaterials 24:3285–3292.  https://doi.org/10.1016/s0142-9612(03)00163-7 CrossRefPubMedGoogle Scholar
  146. 146.
    Rusu VM, Ng CH, Wilke M, Tiersch B, Fratzl P, Peter MG (2005) Size controlled hydroxyapatite nanoparticles as self-organized organic–inorganic composite materials. Biomaterials 26:5414–5426.  https://doi.org/10.1016/j.biomaterials.2005.01.051 CrossRefPubMedGoogle Scholar
  147. 147.
    Chandrasekar A, Sagadevan S, Dakshnamoorthy A (2013) Synthesis and characterization of nano-hydroxyapatite (n-HAP) using the wet chemical technique. Int J Phys Sci 8:1639–1645.  https://doi.org/10.5897/ijps2013.3990 CrossRefGoogle Scholar
  148. 148.
    Chen JD, Nan KH, Yin SH, Wang YJ, Wu T, Zhang QQ (2010) Characterization and biocompatibility of nanohybrid scaffold prepared via in situ crystallization of hydroxyapatite in chitosan matrix. Colloids Surf B 81:640–647.  https://doi.org/10.1016/j.colsurfb.2010.08.017 CrossRefGoogle Scholar
  149. 149.
    Kim BS, Yong SC, Sin YW, Ryu KH, Lee J, You HK (2013) Growth and osteogenic differentiation of alveolar human bone marrow derived mesenchymal stem cells on chitosan-hydroxyapatite composite fabric. J Biomed Mater Res Part A 101:1550–1558.  https://doi.org/10.1002/jbm.a.34456 CrossRefGoogle Scholar
  150. 150.
    Davidenko N, Carrodeguas RG, Peniche C, Solis Y, Cameron RE (2010) Chitosan-apatite composite beads prepared by in situ generation of apatite or Si-apatite nanocrystals. Acta Biomater 6:466–476.  https://doi.org/10.1016/j.actbio.2009.07.029 CrossRefPubMedGoogle Scholar
  151. 151.
    Harding IS, Rachid N, Hing KA (2005) Surface charge and the effect of excess calcium ions on the hydroxyapatite surface. Biomaterials 26:6818–6826.  https://doi.org/10.1016/j.biomaterials.2005.04.060 CrossRefPubMedGoogle Scholar
  152. 152.
    Zhu P, Masuda Y, Kumoto K (2004) The effect of surface charge on hydroxyapatite nucleation. Biomaterials 25:3915–3921.  https://doi.org/10.1016/j.biomaterials.2003.10.022 CrossRefPubMedGoogle Scholar
  153. 153.
    Brasse G, Restoin C, Auguste JL, Roy P, Leparmentier S, Blondy JM (2009) Conception, elaboration and characterization of silica-zirconia based nanostructured optical fiber obtained by the sol–gel process. Wseas Trans Adv Eng Educ 6:45–54. ISSN: 1790-1979 45Google Scholar
  154. 154.
    Mavis B, Taş AC (2000) Dip-coating of calcium hydroxyapatite on titanium alloy Ti–6Al–4V substrates. J Am Ceram Soc 83:989–991.  https://doi.org/10.1111/j.1151-2916.2000.tb01314.x CrossRefGoogle Scholar
  155. 155.
    Huang YY, Chou KS (2003) Studies on the spin coating process of silica films. Ceram Int 29:485–493.  https://doi.org/10.1016/s0272-8842(02)00191-8 CrossRefGoogle Scholar
  156. 156.
    Liu DM, Troczynski T, Tseng WJ (2001) Water-based sol–gel synthesis of hydroxyapatite: process development. Biomaterials 22:1721–1730.  https://doi.org/10.1016/s0142-9612(00)00332-x CrossRefPubMedGoogle Scholar
  157. 157.
    Livage J, Barboux P, Vandenborre MT, Schmutz C, Taulelle F (1992) Sol–gel synthesis of phosphates. J Non Cryst Solids 147–148:18–23.  https://doi.org/10.1016/s0022-3093(05)80586-1 CrossRefGoogle Scholar
  158. 158.
    Wang J, Shaw LL (2009) Synthesis of high purity hydroxyapatite nanopowder via sol–gel combustion process. J Mater Sci Mater Med 20:1223–1227.  https://doi.org/10.1007/s10856-008-3685-x CrossRefPubMedGoogle Scholar
  159. 159.
    Kim BH, Jeong JH, Jeon YS, Hwang KS (2007) Hydroxyapatite layers prepared by sol gel assisted electrostatic spray deposition. Ceram Int 33:119–122.  https://doi.org/10.1016/j.ceramint.2005.08.002 CrossRefGoogle Scholar
  160. 160.
    Padmanabhan SK, Balakrishnan A, Chu MC, Lee YJ, Kim TN, Cho SJ (2009) Sol–gel synthesis and characterization of hydroxyapatite nanorods. Particuology 7:466–470.  https://doi.org/10.1016/j.partic.2009.06.008 CrossRefGoogle Scholar
  161. 161.
    Yang L, Ning X, Chen K, Zhou H (2007) Preparation and properties of hydroxyapatite filters for microbial filtration. Ceram Int 33:483–489.  https://doi.org/10.1016/j.ceramint.2005.10.014 CrossRefGoogle Scholar
  162. 162.
    Ruban Kumar A, Kalainathan S (2010) Sol–gel synthesis of nanostructured hydroxyapatite powder in presence of polyethylene glycol. Phys B Phys Condens Matter 405:2799–2802.  https://doi.org/10.1016/j.physb.2010.03.067 CrossRefGoogle Scholar
  163. 163.
    Hsieh MF, Perng LH, Chin TS, Perng HG (2001) Phase purity of sol gel derived hydroxyapatite ceramic. Biomaterials 22:2601–2607.  https://doi.org/10.1016/s0142-9612(00)00448-8 CrossRefPubMedGoogle Scholar
  164. 164.
    Palanivelu R, RubanKumar A (2013) Synthesis and spectroscopic characterization of hydroxyapatite by sol–gel method. Int J ChemTech Res 5:2965–2969. ISSN: 0974-4290Google Scholar
  165. 165.
    Liu DM, Troczynski T, Tseng WJ (2002) Aging effect on the phase evolution of water-based sol–gel hydroxyapatite. Biomaterials 23:1227–1236.  https://doi.org/10.1016/s0142-9612(01)00242-3 CrossRefPubMedGoogle Scholar
  166. 166.
    Chai CS, Gross KA, Ben-Nissan B (1998) Critical ageing of hydroxyapatite sol–gel solutions. Biomaterials 19:2291–2296.  https://doi.org/10.1016/s0142-9612(98)90138-7 (PMID: 9884042) CrossRefPubMedGoogle Scholar
  167. 167.
    Bakan F, Laçin O, Sarac H (2013) A Novel low temperature sol–gel synthesis process for thermally stable nano crystalline hydroxyapatite. Powder Technol 233:295–302.  https://doi.org/10.1016/j.powtec.2012.08.030 CrossRefGoogle Scholar
  168. 168.
    Rajkumar M, Meenakshi Sundaram N, Rajendran V (2011) Preparation of size controlled, stoichiometric and bioresorbable hydroxyapatite nanorod by varying initial pH, Ca/P ratio and sintering temperature. Dig J Nanomater Biostruct 6(1):169–179. https://www.researchgate.net/publication/259469281 Google Scholar
  169. 169.
    Jamarun N, Sari TP, Drajat S, Azharman Z, Asril A (2015) Effect of pH variation on hydroxyapatite synthesis through sol–gel method. Res J Pharm Biol Chem Sci 6:1065–1069. ISSN: 0975-8585Google Scholar
  170. 170.
    Jamarun N, Miftahurrahmi, Septiani U (2016) Synthesis of hydroxyapatite from Halaban limestone by sol–gel method. Res J Biol Chem Sci 7:2956–2961. ISSN: 0975-8585Google Scholar
  171. 171.
    Saranya K, Kowshik M, Ramanan Sutapa Roy (2011) Synthesis of hydroxyapatite nanopowders by sol–gel emulsion technique. Bull Mater Sci 34:1749–1753.  https://doi.org/10.1007/s12034-011-0386-8 CrossRefGoogle Scholar
  172. 172.
    Sanosh KP, Chu MC, Balakrishnan A, Kim TN, Cho SJ (2009) Preparation and characterization of nanohydroxyapatite powder using sol gel technique. Bull Mater.  https://doi.org/10.1007/s12034-009-0069-x CrossRefGoogle Scholar
  173. 173.
    Anuar A, Salimi MNA, Daud MZM, Yee YF (2013) Characterizations of hydroxyapatite (HAp) nanoparticles produced by sol–gel method. Adv Environ Biol 7:3587–3590. ISSN: 1995-0756Google Scholar
  174. 174.
    Gong T, Xie J, Liao J, Zhang T, Lin S, Lin Y (2015) Nanomaterials and bone regeneration. Bone Res 3:15029.  https://doi.org/10.1038/boneres.2015.29 CrossRefPubMedPubMedCentralGoogle Scholar
  175. 175.
    Huebsch N, Mooney DJ (2009) Inspiration and application in the evolution of biomaterials. Nature 462:426–432.  https://doi.org/10.1038/nature08601 CrossRefPubMedPubMedCentralGoogle Scholar
  176. 176.
    Kavitha M, Subramanian R, Vinoth S, Neelamegan E (2015) Optimization of process parameters for solution combustion synthesis of strontium substituted hydroxyapatite nanocrystals using design of experiments approach. Powder Technol 271:167–181.  https://doi.org/10.1016/j.powtec.2014.10.046 CrossRefGoogle Scholar
  177. 177.
    Zhou H, Lee J (2011) Nanoscale hydroxyapatite particles for bone tissue engineering. Acta Biomater 7:2769–2781.  https://doi.org/10.1016/j.actbio.2011.03.019 CrossRefPubMedGoogle Scholar
  178. 178.
    Natarajan UV, Rajeswari S (2008) Influence of calcium precursors on the morphology and crystallinity of sol–gel-derived hydroxyapatite nanoparticles. J Cryst Growth 310:4601–4611.  https://doi.org/10.1016/j.jcrysgro.2008.07.118 CrossRefGoogle Scholar
  179. 179.
    Loo SCJ, Siew YE, Ho S, Boey FYC, Ma J (2008) Synthesis and hydrothermal treatment of nanostructured hydroxyapatite of controllable sizes. J Mater Sci Mater Med 19:1389–1397.  https://doi.org/10.1007/s10856-007-3261-9 CrossRefPubMedGoogle Scholar
  180. 180.
    Yoshimura M, Suda H, Okamoto K (1994) Hydrothermal synthesis of biocompatible whiskers. J Mater Sci 29:3399–3402.  https://doi.org/10.1007/bf00352039 CrossRefGoogle Scholar
  181. 181.
    Felício-Fernandes G, Laranjeira Mauro CM (2000) Calcium phosphate biomaterials from marine algae, hydrothermal synthesis and characterization, Química. Nova 23:1678–7064.  https://doi.org/10.1590/s0100-40422000000400002 CrossRefGoogle Scholar
  182. 182.
    Roeder RK, Converse GL, Kane RJ, Yue W (2008) Hydroxyapatite-reinforced polymer biocomposites for synthetic bone substitutes. JOM 60:38–45.  https://doi.org/10.1007/s11837-008-0030-2 CrossRefGoogle Scholar
  183. 183.
    Sadat-Shojai M, Atai M, Nodehi A, Khanlar LN (2010) Hydroxyapatite nanorods as novel fillers for improving the properties of dental adhesives: synthesis and application. Dent Mater 26:471–482.  https://doi.org/10.1016/j.dental.2010.01.005 CrossRefPubMedGoogle Scholar
  184. 184.
    Bayraktar D, Tas AC (1999) Chemical preparation of carbonated calcium hydroxyapatite powders at 37 °C in urea-containing synthetic body fluids. J Eur Ceram Soc 19:2573–2579.  https://doi.org/10.1016/s0955-2219(99)00132-6 CrossRefGoogle Scholar
  185. 185.
    Zhang X, Vecchio KS (2007) Hydrothermal synthesis of hydroxyapatite rods. J Cryst Growth 308:133–140.  https://doi.org/10.1016/j.jcrysro.2007.07.059 CrossRefGoogle Scholar
  186. 186.
    Ashok M, Kalkura SN, Sundaram NM, Arivuoli D (2007) Growth and characterization of hydroxyapatite crystals by hydrothermal method. J Mater Sci Mater Med 18:895–898.  https://doi.org/10.1007/s10856-006-0070-5 CrossRefPubMedGoogle Scholar
  187. 187.
    Yoshimura M (1998) Importance of soft Solution processing for advanced inorganic materials. J Mater Res 13:796–802.  https://doi.org/10.1557/jmr.1998.0101 CrossRefGoogle Scholar
  188. 188.
    Chaopanich P, Siriphannon P, Sodium (2016) polystyrene sulfonate template assisted hydrothermal synthesis of hydroxyapatite nanorods. Indian J Chem 55A:1084–1089. ISSN: 0975-0975Google Scholar
  189. 189.
    Zhang G, Chen J, Yang S, Yu Q, Wang Z, Zhang Q (2011) Preparation of amino-acid-regulated hydroxyapatite particles by hydrothermal method. Mater Lett 65:572–574.  https://doi.org/10.1016/j.matlet.2010.10.078 CrossRefGoogle Scholar
  190. 190.
    Tsiourvas D, Tsetsekou A, Kammenou MI, Boukos N (2011) Controlling the formation of hydroxyapatite nanorods with dendrimers. J Am Ceram Soc 94:2023–2029.  https://doi.org/10.1111/j.1551-2916.2010.04342.x CrossRefGoogle Scholar
  191. 191.
    Lemos AF, Rocha JHG, Quaresma SSF, Kannan S, Oktar FN, Agathopoulos S, Ferreira JMF (2006) Hydroxyapatite nano-powders produced hydrothermally from nacreous material. J Eur Ceram Soc 26:3639–3646.  https://doi.org/10.1016/j.jeurceramsoc.2005.12.011 CrossRefGoogle Scholar
  192. 192.
    Yoshimura M, Suyaridworakun P, Koh F, Fujiwara T, Pongkau D, Ahniyaz A (2004) Hydrothermal conversion of calcite crystals to hydroxyapatite. Mater Sci Eng C 24:521–525.  https://doi.org/10.1016/j.msec.2004.01.005 CrossRefGoogle Scholar
  193. 193.
    Santos C, Almeida MM, Costa ME (2015) Morphological evolution of hydroxyapatite particles in the presence of different citrate: calcium ratios. Cryst Growth Des 15:4417–4426.  https://doi.org/10.1021/acs.cgd.5b00737 CrossRefGoogle Scholar
  194. 194.
    Zhu R, Yu R, Yao J, Wang D, Ke J (2008) Morphology control of hydroxyapatite through hydrothermal process. J Alloys Compd 457:555–559.  https://doi.org/10.1016/j.jallcom.2007.03.081 CrossRefGoogle Scholar
  195. 195.
    Yang Y, Wu Q, Wang M, Long J, Mao Zhou, Chen X (2014) Hydrothermal synthesis of hydroxyapatite with different morphologies: influence of supersaturation of the reaction system. Cryst Growth Des 14:4864–4871.  https://doi.org/10.1021/cg501063j CrossRefGoogle Scholar
  196. 196.
    Sadat-Shojai M, Atai M, Nodehi A (2011) A design of experiments (DOE) for the optimization of hydrothermal synthesis of hydroxyapatite nanoparticles. J Braz Chem Soc 22:571–582.  https://doi.org/10.1590/s0103-50532011000300023 CrossRefGoogle Scholar
  197. 197.
    Goudarzi A, Solati-Hashjin M, Moztarzadeh F (2007) Surfactant assisted synthesis of hydroxyapatite nanorods by aqueous precipitation and hydrothermal post-treatment. In: Heinrich JG, Aneziris C (eds) Proceedings of the 10th ECerS conference, Göller Verlag, Baden-Baden. ISBN: 3-87264-022-4, 964-968Google Scholar
  198. 198.
    Chen YQ, Xing XF, Gao WM (2015) Synthesis of spherical nano-hydroxyapatite by hydrothermal method with l-lysine template. Key Eng Mater 633:17–20.  https://doi.org/10.4028/www.scientific.net/KEM.633.17 CrossRefGoogle Scholar
  199. 199.
    Jin X, Chen X, Cheng Y, Wang L, Hu B, Tan J (2015) Effects of hydrothermal temperature and time on hydrothermal synthesis of colloidal hydroxyapatite nanorods in the presence of sodium citrate. J Colloid Interface Sci 450:151–158.  https://doi.org/10.1016/j.jcis.2015.03.010 CrossRefPubMedGoogle Scholar
  200. 200.
    Wilson OCJR, Hull JR (2008) Surface modification of nanophase hydroxyapatite with chitosan. Mater Sci Eng C 28:434–437.  https://doi.org/10.1016/j.msec.2007.04.005 CrossRefGoogle Scholar
  201. 201.
    Yuan H, Chen N, Lü X, Zheng B (2008) Experimental study of natural hydroxyapatite/chitosan composite on reconstructing bone defects. J Nanjing Med Univ 22:372–375.  https://doi.org/10.1016/s1007-4376(09)600009-5 CrossRefGoogle Scholar
  202. 202.
    Danilchenko SN, Kalinkevich OV, Pogorelov MV (2009) Chitosan–hydroxyapatite composite biomaterials made by a one step co-precipitation method: preparation, characterization and in vivo tests. J Biol Phys Chem 9:119–126.  https://doi.org/10.4024/22da09a.jbpc.09.03 CrossRefGoogle Scholar
  203. 203.
    Li LH, Zhao MY, Ding S, Zhou CR (2011) Rapid biomimetic mineralization of chitosan scaffolds with a precursor sacrificed method in ethanol/water mixed solution, eXPRESS. Polym Lett 5:545–554.  https://doi.org/10.3144/expresspolymlett.2011.53 CrossRefGoogle Scholar
  204. 204.
    Zhang Y, Zhang M (2001) Synthesis and characterization of macro-porous chitosan/calcium phosphate composite scaffolds for tissue engineering. J Biomed Mater Res 55:304–312.  https://doi.org/10.1002/1097-4636(20010605)55:3%3c304:AID-JBM1018%3e3.0.CO;2-J CrossRefPubMedGoogle Scholar
  205. 205.
    Oliveira JM, Rodrigues MT, Silva SS, Malafaya PB, Gomes ME, Viegas CA, Dias IR, Azevedo JT, Mano JF, Reis RL (2006) Novel Hydroxyapatite/chitosan bilayered scaffold for osteochondral tissue-engineering applications: scaffold design and its performance when seeded with goat bone marrow stromal cells. Biomaterials 27:6123–6137.  https://doi.org/10.1016/j.biomaterials.2006.07.034 CrossRefPubMedGoogle Scholar
  206. 206.
    Zhao F, Grayson WL, Ma T, Bunnell B, Lu WW (2006) Effects of hydroxyapatite in 3-D chitosan–gelatin polymer network on human mesenchymal stem cell construct development. Biomaterials 27:1859–1867.  https://doi.org/10.1016/j.biomaterials.2005.09.031 CrossRefPubMedGoogle Scholar
  207. 207.
    Li J, Chen YP, Yin Y, Yao F, Yao K (2007) Modulation of nano-hydroxyapatite size via formation on chitosan/gelatin network film in situ. Biomaterials 28:781–790.  https://doi.org/10.1016/j.biomaterials.2006.09.042 CrossRefPubMedGoogle Scholar
  208. 208.
    Li Wang, Li C (2007) Preparation and physicochemical properties of a novel hydroxyapatite/chitosan-silk fibroin composite. Carbohyd Polym 68:740–745.  https://doi.org/10.1016/j.carbpol.2006.08.010 CrossRefGoogle Scholar
  209. 209.
    Jiang LY, Li YB, Zhang L, Wang XJ (2009) Preparation and characterization of a novel composite containing carboxymethyl cellulose used for bone repair. Mater Sci Eng C 29:193–198.  https://doi.org/10.1016/j.mec.2008.06.009 CrossRefGoogle Scholar
  210. 210.
    Madhumathi K, Binulal NS, Nagahama H, Tamura H, Shalumon KT, Selvamurugan N, Nair SV, Jayakumar R (2009) Preparation and characterization of novel β-chitin–hydroxyapatite composite membranes for tissue engineering applications. Int J Biol Macromol 44:1–5.  https://doi.org/10.1016/j.ijbiomac.2008.09.013 CrossRefPubMedGoogle Scholar
  211. 211.
    Li J, Dou Y, Yang J, Yin Y, Zhang H, Yao F, Wang V, Yao K (2008) Surface characterization and biocompatibility of micro- and nano-hydroxyapatite/chitosan/gelatin network films. Mater Sci Eng C 29:1207–1215.  https://doi.org/10.1016/j.msec.2008.09.038 CrossRefGoogle Scholar
  212. 212.
    Aimoli CG, Beppu MM (2006) Precipitation of calcium phosphate and calcium carbonate induced over chitosan membranes: a quick method to evaluate the influence of polymeric matrices in heterogeneous calcification. Colloids Surf B Biointerfaces 53:15–22.  https://doi.org/10.1016/j.colsurfb.2006.07.012 CrossRefPubMedGoogle Scholar
  213. 213.
    Muzzarelli RAA (2009) Chitins and chitosans for the repair of wounded skin, nerve, cartilage and bone. Carbohyd Polym 76:167–182.  https://doi.org/10.1016/j.carbpol.2008.11.002 CrossRefGoogle Scholar
  214. 214.
    Kong L, Gao Y, Lu G, Gong Y, Zhao N, Zhang X (2006) A study on the bioactivity of chitosan/nano-hydroxyapatite composite scaffolds for bone tissue engineering. Eur Polym J 42:3171–3179.  https://doi.org/10.1016/j.eurpolymj.2006.08.009 CrossRefGoogle Scholar
  215. 215.
    Leonor IB, Baran ET, Kawashita M, Reis RL, Kokubo T, Nakamura T (2008) Growth of a bone-like apatite on chitosan microparticles after a calcium silicate treatment. Acta Biomater 4:1349–1359.  https://doi.org/10.1016/j.actbio.2008.03.003 CrossRefPubMedGoogle Scholar
  216. 216.
    Manjubala I, Scheler S, Bossert J, Jandt KD (2006) Mineralisation of chitosan scaffolds with nano-apatite formation by double diffusion technique. Acta Biomater 2:75–84.  https://doi.org/10.1016/j.actbio.2005.09.007 CrossRefPubMedGoogle Scholar
  217. 217.
    Simkiss K, Wilbur KM (1989) Biomineralization. Cell biology and mineral deposition. Academic Press, San Diego, p 337. ISBN 012643807Google Scholar
  218. 218.
    Li L, Zhao M, Ding S, Zhou C (2011) Single-step mineralization of woodpile chitosan scaffolds with improved cell compatibility. J Biomed Mater Res Part B Appl Biomater 98B(2):230–237.  https://doi.org/10.1002/jbm.b.31811 CrossRefGoogle Scholar
  219. 219.
    Yamaguchi I, Tokuchi K, Fukuzaki H, Koyama Y, Takakuda K, Monma H, Tanaka J (2001) Preparation and microstructure analysis of chitosan-hydroxyapatite nanocomposites. J Biomed Mater Res 55:20–27.  https://doi.org/10.1002/1097-4636(200104)55:1%3c20:aid-jbm30%3e3.0.co;2-f CrossRefPubMedGoogle Scholar
  220. 220.
    Chesnutt BM, Viano AM, Yuan Y, Guda T, Appleford MR, Ong JL, Haggard WO, Bumgardner JD (2009) Design and characterization of a novel chitosan/nanocrystalline calcium phosphate composite scaffold for bone regeneration. J Biomed Mater Res Part A 88:491–502.  https://doi.org/10.1002/jbm.a.31878 CrossRefGoogle Scholar
  221. 221.
    Miyazaki S, Ishii K, Nadai T (1981) The use of chitin and chitosan as drug carriers. Chem Pharm Bull (Tokyo) 29:3067–3069.  https://doi.org/10.1248/cpb.29.3067 CrossRefGoogle Scholar
  222. 222.
    Barabás R, Czikó M, Dékány I, Bizo L, Bogya ES (2013) Comparative study of particle size analysis of hydroxyapatite-based nanomaterials. Chem Pap 67:1414–1423.  https://doi.org/10.2478/s11696-013-0409-6 CrossRefGoogle Scholar
  223. 223.
    Yang QW, Wang JX, Guo F, Chen JF (2010) Preparation of hydroxyapatite nanoparticles by using high-gravity reactive precipitation combined with hydrothermal method. Ind Eng Chem Res 49:9857–9863.  https://doi.org/10.1021/ie1012757 CrossRefGoogle Scholar
  224. 224.
    Nikpour MR, Rabiee SM, Jahanshahi M (2012) Synthesis and characterization of hydroxyapatite/chitosan nanocomposite materials for medical engineering applications. Compos B 43:1881–1886.  https://doi.org/10.1016/j.compositesb.2012.01.056 CrossRefGoogle Scholar
  225. 225.
    Shavandi A, Bekhit AD, Sun Z, Ali A, Gould M (2015) A novel squid pen chitosan/hydroxyapatite/β-tricalcium phosphate composite for bone tissue engineering. Mater Sci Eng C 55:337–383.  https://doi.org/10.1016/j.msec.2015.05.029 CrossRefGoogle Scholar
  226. 226.
    Reys LL, Silva SS, Oliveira JM, Caridade SG, Mano JF, Silva TH (2013) Revealing the potential of squid chitosan-based structures for biomedical applications. Biomed Mater 8:1–11.  https://doi.org/10.1088/1748-6041/8/4/045002 CrossRefGoogle Scholar
  227. 227.
    Kim HW, Kim HE, Salih V (2005) Stimulation of osteoblast responses to biomimetic nanocomposites of gelatin-hydroxyapatite for tissue engineering scaffolds. Biomaterials 26:5221–5230.  https://doi.org/10.1016/j.biomaterials.2005.01.047 CrossRefPubMedGoogle Scholar
  228. 228.
    Mohamed KR, Mostafa AA (2008) Preparation and bioactivity evaluation of hydroxyapatite titania/chitosan-gelatin polymeric biocomposites. Mater Sci Eng C 28:1087–1099.  https://doi.org/10.1016/j.msec.2007.04.040 CrossRefGoogle Scholar
  229. 229.
    Wei G, Ma PX (2004) Structure and properties of nano-hydroxyapatite/polymer composite scaffolds for bone tissue engineering. Biomaterials 25:4749–4757.  https://doi.org/10.1016/j.biomaterials.2003.12.005 CrossRefPubMedGoogle Scholar
  230. 230.
    Cai X, Tong H, Shen X, Chen W, Yan J, Hu J (2009) Preparation and characterization of homogeneous chitosan polylactic acid/hydroxyapatite nanocomposite for bone tissue engineering and evaluation of its mechanical properties. Acta Biomater 5:2693–2703.  https://doi.org/10.1016/j.actbio.2009.03.005 CrossRefPubMedGoogle Scholar
  231. 231.
    Rodrigues CV, Serricella P, Linhares AB, Guerdes RM, Borojevic R, Rossi MA, Duarte MEL, Farina M (2003) Characterization of a bovine collagen-hydroxyapatite composite scaffold for bone tissue engineering. Biomaterials 24:4987–4997.  https://doi.org/10.1016/s0142-9612(03)00410-1 CrossRefPubMedGoogle Scholar
  232. 232.
    Yu CC, Chang JJ, Lee YH, Lin YC, Wu MH, Yang MC, Chien CT (2013) Electrospun scaffolds composing of alginate, chitosan, collagen and hydroxyapatite for applying in bone tissue engineering. Mater Lett 93:133–136.  https://doi.org/10.1016/j.matlet.2012.11.040 CrossRefGoogle Scholar
  233. 233.
    Saravanan S, Nethala S, Pattnaik S, Tripathi A, Moorthi A, Selvamurugan N (2011) Preparation, characterization and antimicrobial activity of a bio-composite scaffold containing chitosan/nano hydroxyapatite/nano-silver for bone tissue engineering. Int J Biol Macromol 49:188–193.  https://doi.org/10.1016/j.ijbiomac.2011.04.010 CrossRefPubMedGoogle Scholar
  234. 234.
    Venkatesan J, Qian ZJ, Ryu B, Kumar NA, Kim SK (2011) Preparation and characterization of carbon nanotube grafted chitosan natural hydroxyapatite composite for bone tissue engineering. Carbohyd Polym 83:569–577.  https://doi.org/10.1016/j.carbpol.2010.08.019 CrossRefGoogle Scholar
  235. 235.
    Jiang L, Li Y, Wang X, Li Zhang, Wen J, Gong M (2008) Preparation and properties of nano-hydroxyapatite/chitosan/carboxymethyl cellulose composite scaffold. Carbohydr Polym 74:680–684.  https://doi.org/10.1016/j.carbpol.2008.04.035 CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  • Djalila Boudemagh
    • 1
    • 2
    Email author
  • Pierre Venturini
    • 3
  • Solenne Fleutot
    • 3
  • Franck Cleymand
    • 3
  1. 1.Unité de Recherche Sciences des Matériaux et ApplicationsUniversité Constantine 1ConstantineAlgeria
  2. 2.Department of Processes EngineeringUniversity Ferhat Abbas Setif 1SetifAlgeria
  3. 3.Institut Jean Lamour (UMR CNRS 7198)Université de LorraineNancy CedexFrance

Personalised recommendations