Advertisement

Polymer Bulletin

, Volume 76, Issue 2, pp 903–918 | Cite as

Optical properties of PVC/Al2O3 nanocomposite films

  • T. A. TahaEmail author
Original Paper

Abstract

In this work, polyvinyl chloride (PVC) polymer films doped with 0, 2, 4, and 6 wt% Al2O3 nanoparticles with average size of 10 nm were prepared by solution casting route. Al2O3 nanoparticles are found to possess rhombohedral crystal structure, and PVC is partly crystallized as confirmed with XRD analysis. SEM images showed that Al2O3 nanoparticles are well distributed in the PVC film surface. The direct optical energy gap (Eopt) decreased from 5.05 to 3.60 eV and Urbach energy (EU) increased with increasing Al2O3 concentration. The typical excitation energy for electronic transitions (E0), the dispersion energy (Ed), refractive index, dipole strength (f), average oscillator wavelength (λ0), oscillator strength parameter (S0), optical conductivity, and both static and high-frequency dielectric constants are found to increase with increasing Al2O3 content. The third-order nonlinear optical susceptibility (χ(3)) and the nonlinear refractive index (n2) were estimated. Also, the ratio of free carriers to effective mass (N/m*) increased from 2.69 × 1057 to 170.91 × 1057 m−3 kg−1 with increasing Al2O3 nanoparticles percentage. Finally, the group velocity dispersion (GVD), dispersion coefficient for material dispersion (D), and third-order dispersion (TOD) are found to increase upon increasing Al2O3 filler ratio.

Keywords

Polymer nanocomposite PVC Al2O3 nanoparticles Optical conductivity Dispersion parameters 

References

  1. 1.
    Trindade T, Neves MC, Barros AMV (2000) Preparation and optical properties of CdSe/polymer nanocomposites. Scr Mater 43(6):567–571Google Scholar
  2. 2.
    Bhiwankar NN, Weiss RA (2006) Melt intercalation/exfoliation of polystyrene–sodium-montmorillonite nanocomposites using sulfonated polystyrene ionomer compatibilizers. Polymer 47(19):6684–6691Google Scholar
  3. 3.
    Bouropoulos N, Psarras GC, Moustakas N, Chrissanthopoulos A, Baskoutas S (2008) Optical and dielectric properties of ZnO-PVA nanocomposites. Phys Status Solidi (a) 205(8):2033–2037Google Scholar
  4. 4.
    Sterky K, Jacobsen H, Jakubowicz I, Yarahmadi N, Hjertberg T (2010) Influence of processing technique on morphology and mechanical properties of PVC nanocomposites. Eur Polymer J 46(6):1203–1209Google Scholar
  5. 5.
    Roy AS, Gupta S, Sindhu S, Parveen A, Ramamurthy PC (2013) Dielectric properties of novel PVA/ZnO hybrid nanocomposite films. Compos B Eng 47:314–319Google Scholar
  6. 6.
    Ebnalwaled AA, Thabet A (2016) Controlling the optical constants of PVC nanocomposite films for optoelectronic applications. Synth Met 220:374–383Google Scholar
  7. 7.
    Abdullah OG, Salman YA, Saleem SA (2016) Electrical conductivity and dielectric characteristics of in situ prepared PVA/HgS nanocomposite films. J Mater Sci Mater Electron 27(4):3591–3598Google Scholar
  8. 8.
    Al-Hartomy OA, Al-Salamy F, Al-Ghamdi AA, Abdel Fatah M, Dishovsky N, El-Tantawy F (2011) Influence of graphite nanosheets on the structure and properties of PVC-based nanocomposites. J Appl Polym Sci 120(6):3628–3634Google Scholar
  9. 9.
    Kemal I, Whittle A, Burford R, Vodenitcharova T, Hoffman M (2013) Toughening of unmodified polyvinylchloride through the addition of nanoparticulate calcium carbonate and titanate coupling agent. J Appl Polym Sci 127(3):2339–2353Google Scholar
  10. 10.
    Mathur V, Patidar D, Sharma K (2015) Effect of nano CdS dispersion on thermal conductivity of PS/PVC and PS/PMMA polymeric blend nanocomposites. Appl Nanosci 5(5):623–628Google Scholar
  11. 11.
    Kobayashi S, Mullen K (2015) Encyclopedia of Polymeric Nanomaterials. Springer, Heidelberg, p 1740Google Scholar
  12. 12.
    Deshmukh S, Burghate D, Shilaskar S, Chaudhari G, Deshmukh P (2008) Optical properties of polyaniline doped PVC-PMMA thin films. Indian J Pure Appl Phys 46(5):344–348Google Scholar
  13. 13.
    Mahmoud WE, Al-Ghamdi AA (2011) The influence of Cd (ZnO) on the structure, optical and thermal stabilities of polyvinyl chloride nanocomposites. Polym Compos 32(7):1143–1147Google Scholar
  14. 14.
    Abdullah ET, Hasan SM, Naje AN (2013) Optical properties of PVC-MWCNT nano composites. Indian J Pure Appl Phys 51:77–80Google Scholar
  15. 15.
    Sayed AM, Morsi WM (2013) Dielectric relaxation and optical properties of polyvinyl chloride/lead monoxide nanocomposites. Polym Compos 34(12):2031–2039Google Scholar
  16. 16.
    Abdul Nabi M, Yusop RM, Yousif E, Abdullah BM, Salimon J, Salih N, Zubairi SI (2014) Effect of nano ZnO on the optical properties of poly (vinyl chloride) films. Int J Polym Sci 2014:697809-1–697809-6Google Scholar
  17. 17.
    Hassen A, El-Sayed S, Morsi WM, El Sayed AM (2014) Preparation, dielectric and optical properties of Cr2O3/PVC Nanocomposite films. J Adv Phys 4:571–584Google Scholar
  18. 18.
    Taha TA (2017) Optical and thermogravimetric analysis of Pb3O4/PVC nanocomposites. J Mater Sci Mater Electron 28(16):12108–12114Google Scholar
  19. 19.
    Allen NS, Edge M, Rodriguez M, Liauw CM, Fontan E (2000) Aspects of the thermal oxidation of ethylene vinyl acetate copolymer. Polym Degrad Stab 68(3):363–371Google Scholar
  20. 20.
    Giuffrida S, Condorelli GG, Costanzo LL, Ventimiglia G, Di Mauro A, Fragalà IL (2008) In situ synthesis of photoluminescent films of PVC, doped with Ce 3 + ion. J Photochem Photobiol A 195(2):215–222Google Scholar
  21. 21.
    Mortazavi SH, Ghoranneviss M, Faryadras S (2012) Effect of low pressure nitrogen DC plasma on optical properties of biaxial-oriented polypropylene (BOPP), poly methyl methacrylate (PMMA) and poly vinyl chloride (PVC) films. J Fusion Energy 31(3):211–215Google Scholar
  22. 22.
    Gündüz B (2013) Effects of molarity and solvents on the optical properties of the solutions of tris [4-(5-dicyanomethylidenemethyl-2-thienyl) phenyl] amine (TDCV-TPA) and structural properties of its film. Opt Mater 36(2):425–436Google Scholar
  23. 23.
    Mahmoud WE, Al-Ghamdi AA, Al-Agel F (2011) Synthesis and optical properties of poly (vinyl acetate)/bismuth oxide nanorods. Polym Adv Technol 22(12):2055–2061Google Scholar
  24. 24.
    Mahmoud WE, Shirbeeny W, Al-Ghamdi AA, Al-Heniti S (2012) Synthesis and characterization of CdxZn1 − xO nanoparticles-doped aryl poly ether ether ketone for novel application potentials. J Appl Polym Sci 125(1):339–343Google Scholar
  25. 25.
    Taha TA, Rammah YS (2016) Optical characterization of new borate glass doped with titanium oxide. J Mater Sci Mater Electron 27(2):1384–1390Google Scholar
  26. 26.
    Urbach F (1953) The long-wavelength edge of photographic sensitivity and of the electronic absorption of solids. Phys Rev 92(5):1324Google Scholar
  27. 27.
    Raja V, Sarma AK, Rao VN (2003) Optical properties of pure and doped PMMA-CO-P4VPNO polymer films. Mater Lett 57(30):4678–4683Google Scholar
  28. 28.
    Tommalieh MJ, Zihlif AM (2010) Optical properties of polyimide/silica nanocomposite. Phys B 405(23):4750–4754Google Scholar
  29. 29.
    Yahia IS, Farag AAM, Cavas M, Yakuphanoglu F (2013) Effects of stabilizer ratio on the optical constants and optical dispersion parameters of ZnO nano-fiber thin films. Superlattices Microstruct 53:63–75Google Scholar
  30. 30.
    Güneri E, Kariper A (2012) Optical properties of amorphous CuS thin films deposited chemically at different pH values. J Alloy Compd 516:20–26Google Scholar
  31. 31.
    Göde F (2011) Annealing temperature effect on the structural, optical and electrical properties of ZnS thin films. Phys B 406(9):1653–1659Google Scholar
  32. 32.
    Oubaha M, Elmaghrum S, Copperwhite R, Corcoran B, McDonagh C, Gorin A (2012) Optical properties of high refractive index thin films processed at low-temperature. Opt Mater 34(8):1366–1370Google Scholar
  33. 33.
    Leguijt C, Lölgen P, Eikelboom JA, Weeber AW, Schuurmans FM, Sinke WC, Verhoef LA (1996) Low temperature surface passivation for silicon solar cells. Sol Energy Mater Sol Cells 40(4):297–345Google Scholar
  34. 34.
    Cusano A, Iadicicco A, Paladino D, Campopiano S, Cutolo A, Giordano M (2007) Micro-structured fiber Bragg gratings. Part II: towards advanced photonic devices. Opt Fiber Technol 13:291–301Google Scholar
  35. 35.
    Kohoutek T, Orava J, Sawada T, Fudouzi H (2011) Inverse opal photonic crystal of chalcogenide glass by solution processing. J Colloid Interface Sci 353(2):454–458Google Scholar
  36. 36.
    Ho WF, Uddin MA, Chan HP (2009) The stability of high refractive index polymer materials for high-density planar optical circuits. Polym Degrad Stab 94(2):158–161Google Scholar
  37. 37.
    Sakr GB, Yahia IS, Fadel M, Fouad SS, Romčević N (2010) Optical spectroscopy, optical conductivity, dielectric properties and new methods for determining the gap states of CuSe thin films. J Alloy Compd 507(2):557–562Google Scholar
  38. 38.
    Wemple SH, DiDomenico M Jr (1971) Behavior of the electronic dielectric constant in covalent and ionic materials. Phys Rev B 3(4):1338Google Scholar
  39. 39.
    Wemple SH (1973) Refractive-index behavior of amorphous semiconductors and glasses. Phys Rev B 7(8):3767Google Scholar
  40. 40.
    Wemple SH, DiDomenico M Jr (1969) Optical dispersion and the structure of solids. Phys Rev Lett 23(20):1156Google Scholar
  41. 41.
    Gündüz B (2015) Sensing and surface morphological properties of a poly [(9, 9-dioctylfluorenyl-2, 7-diyl)-co-bithiophene] liquid-crystalline polymer for optoelectronic applications. J Appl Polym Sci 132(11):41659-1–41659-8Google Scholar
  42. 42.
    Frumar M, Jedelský J, Frumarova B, Wagner T, Hrdlička M (2003) Optically and thermally induced changes of structure, linear and non-linear optical properties of chalcogenides thin films. J Non-Cryst Solids 326:399–404Google Scholar
  43. 43.
    Gündüz B (2015) Optical properties of poly [2-methoxy-5-(3′, 7′-dimethyloctyloxy)-1, 4-phenylenevinylene] light-emitting polymer solutions: effects of molarities and solvents. Polym Bull 72(12):3241–3267Google Scholar
  44. 44.
    Ticha H, Tichy L (2002) Semiempirical relation between non-linear susceptibility (refractive index), linear refractive index and optical gap and its application to amorphous chalcogenides. J Optoelectron Adv Mater 4(2):381–386Google Scholar
  45. 45.
    Adair R, Chase LL, Payne SA (1989) Nonlinear refractive index of optical crystals. Phys Rev B 39(5):3337Google Scholar
  46. 46.
    Zahran HY, Yahia IS, Alamri FH (2017) Nanostructured pyronin Y thin films as a new organic semiconductor: Linear/nonlinear optics, band gap and dielectric properties. Phys B Condens Matter 513(95–102):39Google Scholar
  47. 47.
    Yakuphanoglu F, Cukurovali A, Yilmaz I (2004) Determination and analysis of the dispersive optical constants of some organic thin films. Phys B Condens Matter 351(1):53–58Google Scholar
  48. 48.
    Fadel M, Fayek SA, Abou-Helal MO, Ibrahim MM, Shakra AM (2009) Structural and optical properties of SeGe and SeGeX (X = In, Sb and Bi) amorphous films. J Alloy Compd 485(1):604–609Google Scholar
  49. 49.
    Khan SA, Al-Hazmi FS, Al-Heniti S, Faidah AS, Al-Ghamdi AA (2010) Effect of cadmium addition on the optical constants of thermally evaporated amorphous Se–S–Cd thin films. Curr Appl Phys 10(1):145–152Google Scholar
  50. 50.
    El-Korashy A, El-Zahed H, Radwan M (2003) Optical studies of [N (CH 3) 4] 2 CoCl 4,[N (CH 3) 4] 2 MnCl 4 single crystals in the normal paraelectric phase. Phys B 334(1):75–81Google Scholar
  51. 51.
    Wakkad MM, Shokr EK, Mohamed SH (2000) Optical and calorimetric studies of Ge–Sb–Se glasses. J Non-Cryst Solids 265(1):157–166Google Scholar
  52. 52.
    Pankove JI (1975) Optical processes in semiconductors. Dover Publications Inc., New York, p 91Google Scholar
  53. 53.
    Mansour AF, Mansour SF, Abdo MA (2015) Improvement structural and optical properties of ZnO/PVA nanocomposites. IOSR J Appl Phys 7(2):60–69Google Scholar
  54. 54.
    Diels Jean Claude, Rudolph Wolfgang (2006) Ultrashort laser pulse phenomena: fundamentals, techniques, and applications on a femtosecond time scale. Academic Press, USA, p 32Google Scholar
  55. 55.
    Gan F (1995) Optical properties of fluoride glasses: a review. J Non-Cryst Solids 184:9–20Google Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Physics and Engineering Mathematics Department, Faculty of Electronic EngineeringMenoufia UniversityMenoufEgypt

Personalised recommendations