Polymer Bulletin

, Volume 76, Issue 2, pp 919–932 | Cite as

Synthesis of novel biodegradable elastomers based on poly[3-hydroxy butyrate] and poly[3-hydroxy octanoate] via transamidation reaction

  • Baki HazerEmail author
  • Elvan Akyol
  • Timur Şanal
  • Sophie Guillaume
  • Birten Çakmakli
  • Alexander Steinbuchel
Original Paper


Poly(3-hydroxyalkanoate)s (PHAs) are a class of polymers receiving attention because of their potential as renewable, biodegradable and high-technology properties. Unlike most short chain length (scl) PHAs such as poly(3-hydroxybutyrate) (PHB), medium chain length (mcl) PHAs such as poly(3-hydroxyoctanoate) (PHO) exhibit low crystallinity and are elastomeric in character. PHB-b–PEG-b–PHO block copolymers can combine both properties in block copolymer matrix. In this study, we report the synthesis of the block copolymers combining the PHB and PHO blocks. Transamidation reactions of PHB with polyethylene glycol with primary amine yield equimolar amounts and PHB with amine ends. PHO reacts with the modified PHB containing the amine end to give PHB-b–PEG-b–PHO block copolymers. Structural analysis of the products was performed by using 1H–, 13C, heteronuclear single quantum coherence NMR techniques. Thermal and mechanical properties of the block polymers were also evaluated.


Poly(3-hydroxyalkanoate) Poly(3-hydroxy butyrate) Poly(3-hydroxy octanoate) Poly(ethylene glycol) Transamidation 



This work was supported by the Bülent Ecevit University Research Funds (#BEU – 2013 – 72118496 - 02 and BEU - 2013 – 72118496 - 03). The authors thank to Prof. Dr. Mahmut Köse and Prof. Dr. İbrahim Demirtaş for their valuable discussion about the NMR spectra.

Supplementary material

289_2018_2410_MOESM1_ESM.docx (608 kb)
Supplementary material 1 (DOCX 608 kb)


  1. 1.
    Lenz RW, Marchessault RH (2005) Bacterial polyesters: biosynthesis, biodegradable plastics and biotechnology. Biomacromolecules 6:1–8CrossRefGoogle Scholar
  2. 2.
    Hazer B, Steinbüchel A (2007) Increased diversification of polyhydroxyalkanoates by modification reactions for industrial and medical applications. Appl Microbiol Biotechnol 74:1–12CrossRefGoogle Scholar
  3. 3.
    Hazer DB, Kilicay E, Hazer B (2012) Poly (3-hydroxyalkanoate)s: diversification and biomedical applications. A state of the art review. Mater Sci Eng C Mater Biol Appl 32:637–647CrossRefGoogle Scholar
  4. 4.
    Marchessault RH, Dou H (2011) Ramsay, microbial medium chainlength poly[(R)-3-hydroxyalkanoate] shows liquid crystal behaviour. J Int J Biol Macromol 48:271–275CrossRefGoogle Scholar
  5. 5.
    Nguyen S, Marchessault RH (2006) Graft copolymers of methyl methacrylate and poly([R]-3-hydroxybutyrate) macromonomers as candidates for inclusion in acrylic bone cement formulations: compression testing. J Biomed Mater Res B Appl Biomater 1:5–12CrossRefGoogle Scholar
  6. 6.
    Hazer B (1996) Poly (β-hydroxy nonanoate) and Polystyrene or poly (methyl methacrylate) graft copolymers: microstructure characteristics and mechanical and thermal behavior. Macromol Chem Phys 197:431–441CrossRefGoogle Scholar
  7. 7.
    Hazer B (2015) Simple synthesis of amphiphilic poly(3-hydroxy alkanoate)s with pendant hydroxyl and carboxylic groups via thiol-ene photo click reactions. Polym Degrad Stab 119:159–166CrossRefGoogle Scholar
  8. 8.
    Zhang DM, Cui FZ, Luo ZS, Lin YB, Zhao K, Chen GQ (2000) Wettability improvement bacterial polyhydroxy alkanoates via ion implantation. Surf Coat Technol 131:350–354CrossRefGoogle Scholar
  9. 9.
    Nguyen S, Marchessault RH (2004) Synthesis and properties of graft copolymers based on poly(3-hydroxybutyrate) macromonomers. Macromol Biosci 4:262–268CrossRefGoogle Scholar
  10. 10.
    Nguyen S, Marchessault RH (2005) Atom transfer radical copolymerization of bacterial poly(3-hydroxybutyrate) macromonomers and methyl methacrylate. Macromolecules 38:290–296CrossRefGoogle Scholar
  11. 11.
    Koçer H, Borcaklı M, Demirel S, Hazer B (2003) Production of bacterial polyesters from some various new substrates by Alcaligenes eutrophus and Pseudomonas oleovorans. Turk J Chem 27:365–373Google Scholar
  12. 12.
    Scandola M, Focarete ML, Adamus G, Sikorska W, Baranowska I, Swierczek S, Gnatowski M, Kowalczuk M, Jedlinski Z (1997) Polymer blends of natural poly(3-hydroxybutyrate-co-3-hydroxyvalerate) and a synthetic atactic poly(3-hydroxybutyrate). Characterization and biodegradation studies. Macromolecules 30:2568–2574CrossRefGoogle Scholar
  13. 13.
    Zinn M, Witholt B, Egli T (2001) Occurrence, synthesis and medical application of bacterial polyhydroxyalkanoate. Adv Drug Deliv Rev 53:5–21CrossRefGoogle Scholar
  14. 14.
    Arkin AH, Hazer B (2002) Chemical modification of chlorinated microbial polyesters. Biomacromolecules 3:1327–1335CrossRefGoogle Scholar
  15. 15.
    Li J, Li X, Ni X, Leong KW (2003) Synthesis and characterization of new biodegradable amphiphilic poly(ethylene oxide)-b-poly[(R)-3-hydroxy butyrate]-b-poly(ethylene oxide) triblock copolymers. Macromolecules 36:2661–2667CrossRefGoogle Scholar
  16. 16.
    Kim HY, Ryu JH, Chu CW, Son GM, Jeong YI, Kwak TW, Kim DH, Chung CW, Rhee YH, Kang DH et al (2014) Paclitaxel-incorporated nanoparticles using block copolymers composed of poly (ethylene glycol)/poly (3-hydroxyoctanoate). Nanoscale Res Lett 9:525CrossRefGoogle Scholar
  17. 17.
    Ravenelle F, Marchessault RH (2002) One-step synthesis of amphiphilic diblock copolymers from bacterial poly([R]-3-hydroxybutyric acid). Biomacromolecules 3:1057–1064CrossRefGoogle Scholar
  18. 18.
    Kim HW, Chung CW, Kim SS, Kim YB, Rhee YH (2002) Preparation and cell compatibility of acrylamide-grafted poly(3-hydroxyoctanoate). Int J Biol Macromol 30:129–135CrossRefGoogle Scholar
  19. 19.
    Sparks J, Scholz C (2008) Synthesis and characterization of a cationic poly(β-hydroxyalkanoate). Biomacromolecules 9:2091–2096CrossRefGoogle Scholar
  20. 20.
    Toraman T, Hazer B (2014) Synthesis and characterization of the novel thermoresponsive conjugates based on poly(3-hydroxy alkanoates). J Polym Environ 22:159–166CrossRefGoogle Scholar
  21. 21.
    Hazer B (2010) Amphiphilic poly (3-hydroxy alkanoate)s: potential candidates for medical applications. Int J Polym Sci. Google Scholar
  22. 22.
    Babinot J, Guigner JM, Renard E, Langlois V (2012) Poly(3-hydroxyalkanoate)-derived amphiphilic graft copolymers for the design of polymersomes. Chem Commun 48:5364–5366CrossRefGoogle Scholar
  23. 23.
    Dai S, Xue L, Zinn M, Li Z (2009) Enzyme-catalyzed polycondensation of polyester macrodiols with divinyl adipate: a green method for the preparation of thermoplastic block copolyesters. Biomacromolecules 10:3176–3181CrossRefGoogle Scholar
  24. 24.
    Andrade AP, Neuenschwander P, Hany R, Egli T, Witholt B, Li Z (2002) Synthesis and characterization of novel copoly(ester–urethane) containing blocks of poly-[(R)-3-hydroxyoctanoate] and poly-[(R)-3-hydroxybutyrate]. Macromolecules 35:4946–4950CrossRefGoogle Scholar
  25. 25.
    Tappel RC, Kucharski JM, Mastroianni JM, Stipanovic AJ, Nomura CT (2012) Biosynthesis of poly[(R)-3-hydroxyalkanoate] copolymers with controlled repeating unit compositions and physical properties. Biomacromolecules 13:2964–2972CrossRefGoogle Scholar
  26. 26.
    Noda I, Green PR, Satkowski MM, Schechtman LA (2005) Preparation and properties of a novel class of polyhydroxyalkanoate copolymers. Biomacromolecules 6:580–586CrossRefGoogle Scholar
  27. 27.
    Chen GQ, Zhang G, Park SJ, Lee SY (2001) Industrial scale production of poly(3-hydroxybutyrate-co-3-hydroxyhexanoate). Appl Microbiol Biotechnol 57:50–55CrossRefGoogle Scholar
  28. 28.
    Ke Y, Zhang XY, Ramakrishna S, He LM, Wu G (2016) Synthetic routes to degradable copolymers deriving from the biosynthesized polyhydroxyalkanoates: a mini review. Express Polym Lett 10:36–53CrossRefGoogle Scholar
  29. 29.
    Adamus G, Sikorska W, Janeczek H, Kwiecie M, Sobota M, Kowalczuk M (2012) Novel block copolymers of atactic PHB with natural PHA for cardiovascular engineering: synthesis and characterization. Eur Polym J 48:621–631CrossRefGoogle Scholar
  30. 30.
    Iwata T, Doi Y, Kasuya KI, Inoue Y (1997) Visualization of enzymatic degradation of poly[(R)-3-hydroxybutyrate] single crystals by an extracellular PHB depolymerase. Macromolecules 30:833–839CrossRefGoogle Scholar
  31. 31.
    Neugebauer D, Rydz J, Goebel I, Dacko P, Kowalczuk M (2007) Synthesis of graft copolymers containing biodegradable poly(3-hydroxybutyrate) chains. Macromolecules 40:1767–1773CrossRefGoogle Scholar
  32. 32.
    Hazer B, Hazer DB, Çoban B (2010) Synthesis of microbial elastomers based on soybean oil. Autoxidation kinetics, thermal and mechanical properties. J Polym Res 17:567–577CrossRefGoogle Scholar
  33. 33.
    Li SM, Rashkov I, Espartero JL, Manolova N, Vert M (1996) Synthesis, characterization, and hydrolytic degradation of PLA/PEO/PLA triblock copolymers with long poly(l-lactic acid) blocks. Macromolecules 29:57–62CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  • Baki Hazer
    • 1
    • 2
    • 3
    • 4
    Email author
  • Elvan Akyol
    • 1
  • Timur Şanal
    • 1
  • Sophie Guillaume
    • 5
  • Birten Çakmakli
    • 6
  • Alexander Steinbuchel
    • 7
    • 8
  1. 1.Department of Chemistry, Faculty of Arts and SciencesBülent Ecevit UniversityZonguldakTurkey
  2. 2.Department of Metallurgical and Materials Engineering, Faculty of EngineeringBülent Ecevit UniversityZonguldakTurkey
  3. 3.Department of Nano Technology EngineeringBülent Ecevit UniversityZonguldakTurkey
  4. 4.Department of Aircraft Airframe Engine MaintenanceKapadokya UniversityÜrgüpTurkey
  5. 5.Institute of Chemical Sciences of Rennes (ISCR), CNRS - University of RennesRennesFrance
  6. 6.Polymer Engineering Department, Faculty of Engineering and ArchitectureMehmet Akif Ersoy UniversityBurdurTurkey
  7. 7.Institute of Microbiology and BiotechnologyUniversity of MünsterMünsterGermany
  8. 8.Environmental Sciences DepartmentKing Abdulaziz UniversityJeddahSaudi Arabia

Personalised recommendations