Polymer Bulletin

, Volume 76, Issue 1, pp 387–407 | Cite as

Synthesis and studies on phosphazene core-based POSS-reinforced polyimide nanocomposites

  • Rajamanickam Revathi
  • Pichaimani Prabunathan
  • Muthukaruppan AlagarEmail author
Original Paper


In the present work, phosphazene core-based polyimide and polyhedral oligomeric silsesquioxane (POSS)-reinforced phosphazene polyimide nanocomposites were developed and characterized. The molecular structure of cyclophosphazene amine (PZA) was confirmed by 1H, 13C NMR and MASS spectroscopic methods. The developed polyimide and its composites were studied for optical, thermal and dielectric properties along with their morphological studies. Interestingly, it was found that the incorporation of 10 wt% of POSS-reinforced PZI composites possesses an improved glass transition temperature (Tg), thermal stability, char yield and flame-retardant behavior than those of neat PZI matrix. The value of dielectric constant gets decreased with increasing the weight percentages of POSS reinforcement and thus 10 wt% POSS-reinforced PZI composites possesses the lowest value of dielectric constant (k = 2.1). Further, it also possesses the highest UV shielding behavior in UVA region, i.e., 93% with minimum weight loss even after exposing for 165 h. The antibacterial activity of the neat PZI matrix and POSS/PZI composites were also studied. The data obtained from different studies that it is suggested that the 10 wt% of POSS/PZI hybrid composite materials can be used in the form of coatings, sealants and matrices in aerospace as well as microelectronics applications.


Cyclotriphosphazene Polyimide POSS Hybrid composites UV radiation resistant Antibacterial activity Low dielectric constant Thermal stability Flame-retardant behavior 

Supplementary material

289_2018_2391_MOESM1_ESM.docx (242 kb)
Supplementary material 1 (DOCX 241 kb)


  1. 1.
    Perez RM, Sandler JKW, Altstädt V, Hoffmann T, Pospiech D, Artner J, Braun U (2007) Novel phosphorus-containing hardeners with tailored chemical structures for epoxy resins: Synthesis and cured resin properties. J Appl Polym Sci 105(5):2744–2759CrossRefGoogle Scholar
  2. 2.
    Lin CH, Cai SX, Leu TS, Hwang TY, Lee HH (2006) Synthesis and properties of flame-retardant benzoxazines by three approaches. J Polym Sci, Part A: Polym Chem 44(11):3454–3468CrossRefGoogle Scholar
  3. 3.
    Ahmad Z, Mark JE (2001) Polyimide−ceramic hybrid composites by the sol−gel route. Chem Mater 13(10):3320–3330CrossRefGoogle Scholar
  4. 4.
    Jiang DD (2009) Polymer nanocomposites. In: Fire retardancy of polymeric materials, chap 11. CRC Press, p 261Google Scholar
  5. 5.
    Blomqvist P, Rosell L, Simonson M (2004) Emissions from fires part I: fire retarded and non-fire retarded TV-sets. Fire Technol 40(1):39–58CrossRefGoogle Scholar
  6. 6.
    Blomqvist P, Rosell L, Simonson M (2004) Emissions from fires part II: simulated room fires. Fire Technol 40(1):59–73CrossRefGoogle Scholar
  7. 7.
    Zaikov GE, Lomakin SM (1998) Polymer flame retardancy: a new approach. J Appl Polym Sci 68(5):715–725CrossRefGoogle Scholar
  8. 8.
    Lu SY, Hamerton I (2002) Recent developments in the chemistry of halogen-free flame retardant polymers. Prog Polym Sci 27(8):1661–1712CrossRefGoogle Scholar
  9. 9.
    Sen AK, Mukherjee B, Bhattacharya AS, Sanghi LK, De PP, Bhowmick AK (1991) Preparation and characterization of low-halogen and nonhalgoen fire-resistant low-smoke (FRLS) cable sheathing compound from blends of functionalized polyolefins and PVC. J Appl Polym Sci 43(9):1673–1684CrossRefGoogle Scholar
  10. 10.
    Chiu SH, Wang WK (1998) Dynamic flame retardancy of polypropylene filled with ammonium polyphosphate, pentaerythritol and melamine additives. Polymer 39(10):1951–1955CrossRefGoogle Scholar
  11. 11.
    Bras ML, Bugajny M, Lefebvre JM, Bourbigot S (2000) Use of polyurethanes as char-forming agents in polypropylene intumescent formulations. Polym Int 49(10):1115–1124CrossRefGoogle Scholar
  12. 12.
    Bourbigot S, Flambard X (2002) Heat resistance and flammability of high performance fibres: a review. Fire Mater 26(4–5):155–168CrossRefGoogle Scholar
  13. 13.
    Chen DQ, Wang YZ, Hu XP, Wang DY, Qu MH, Yang B (2005) Flame-retardant and anti-dripping effects of a novel char-forming flame retardant for the treatment of poly (ethylene terephthalate) fabrics. Polym Degrad Stab 88(2):349–356CrossRefGoogle Scholar
  14. 14.
    Choi J, Yee AF, Laine RM (2003) Organic/inorganic hybrid composites from cubic silsesquioxanes. Epoxy resins of octa (dimethylsiloxyethylcyclohexylepoxide) silsesquioxane. Macromolecules 36(15):5666–5682CrossRefGoogle Scholar
  15. 15.
    Bourbigot S, Duquesne S (2007) Fire retardant polymers: recent developments and opportunities. J Mater Chem 17(22):2283–2300CrossRefGoogle Scholar
  16. 16.
    Lu SY, Hamerton I (2002) Recent developments in the chemistry of halogen-free flame retardant polymers. Prog Polym Sci 27(8):1661–1712CrossRefGoogle Scholar
  17. 17.
    Allcock HR (2007) New approaches to hybrid polymers that contain phosphazene rings. J Inorg Organomet Polym Mater 17(2):349–359CrossRefGoogle Scholar
  18. 18.
    Muraki T, Ueta M, Ihara E, Inoue K (2004) Enhancement of thermal stability of polystyrene and poly (methyl methacrylate) by cyclotriphosphazene derivatives. Polym Degrad Stab 84(1):87–93CrossRefGoogle Scholar
  19. 19.
    Lu SY, Hamerton I (2002) Recent developments in the chemistry of halogen-free flame retardant polymers. Prog Polym Sci 27(8):1661–1712CrossRefGoogle Scholar
  20. 20.
    Inoue K, Nakamura H, Ariyoshi S, Takagi M, Tanigaki T (1989) Heat-resistant polymers prepared from [(4’-(2-vinyl)-4-biphenylyl) oxy] pentachlorocyclotriphosphazene. Macromolecules 22(12):4466–4469CrossRefGoogle Scholar
  21. 21.
    Feher FJ, Newman DA (1990) Enhanced silylation reactivity of a model for silica surfaces. J Am Chem Soc 112(5):1931–1936CrossRefGoogle Scholar
  22. 22.
    Zheng L, Farris RJ, Coughlin EB (2001) Novel polyolefin nanocomposites: synthesis and characterizations of metallocene-catalyzed polyolefin polyhedral oligomeric silsesquioxane copolymers. Macromolecules 34(23):8034–8039CrossRefGoogle Scholar
  23. 23.
    Pichaimani P, Krishnan S, Song JK, Muthukaruppan A (2018) Bio-silicon reinforced siloxane core polyimide green nanocomposite with multifunctional behavior. High Perform Polym 30(5):549–560CrossRefGoogle Scholar
  24. 24.
    Prabunathan P, Thennarasu P, Song JK, Alagar M (2017) Achieving low dielectric, surface free energy and UV shielding green nanocomposites via reinforcing bio-silica aerogel with polybenzoxazine. New J Chem 41(13):5313–5321CrossRefGoogle Scholar
  25. 25.
    Xu H, Kuo SW, Lee JS, Chang FC (2002) Preparations, thermal properties, and T g increase mechanism of inorganic/organic hybrid polymers based on polyhedral oligomeric silsesquioxanes. Macromolecules 35(23):8788–8793CrossRefGoogle Scholar
  26. 26.
    Pellice SA, Fasce DP, Williams RJJ (2003) Properties of epoxy networks derived from the reaction of diglycidyl ether of bisphenol A with polyhedral oligomeric silsesquioxanes bearing OH-functionalized organic substituents. J Polym Sci, Part B: Polym Phys 41(13):1451–1461CrossRefGoogle Scholar
  27. 27.
    Sethuraman K, Prabunathan P, Alagar M (2014) Thermo-mechanical and surface properties of POSS reinforced structurally different diamine cured epoxy nanocomposites. RSC Adv 4(85):45433–45441CrossRefGoogle Scholar
  28. 28.
    Leu CM, Chang YT, Wei KH (2003) Synthesis and dielectric properties of polyimide-tethered polyhedral oligomeric silsesquioxane (POSS) nanocomposites via POSS-diamine. Macromolecules 36(24):9122–9127CrossRefGoogle Scholar
  29. 29.
    Leu CM, Chang YT, Wei KH (2003) Polyimide-side-chain tethered polyhedral oligomeric silsesquioxane nanocomposites for low-dielectric film applications. Chem Mater 15(19):3721–3727CrossRefGoogle Scholar
  30. 30.
    Devaraju S, Vengatesan MR, Alagar M (2011) Studies on thermal and dielectric properties of ether linked cyclohexyl diamine (ELCD)-based polyimide POSS nanocomposites (POSS-PI). High Perform Polym 23(2):99–111CrossRefGoogle Scholar
  31. 31.
    Jothibasu S, Premkumar S, Alagar M, Hamerton I (2008) Synthesis and characterization of a POSS-maleimide precursor for hybrid nanocomposites. High Perform Polym 20(1):67–85CrossRefGoogle Scholar
  32. 32.
    Nagendiran S, Alagar M, Hamerton I (2010) Octasilsesquioxane-reinforced DGEBA and TGDDM epoxy nanocomposites: Characterization of thermal, dielectric and morphological properties. Acta Mater 58(9):3345–3356CrossRefGoogle Scholar
  33. 33.
    Huang JC, He CB, Xiao Y, Mya KY, Dai J, Siow YP (2003) Polyimide/POSS nanocomposites: interfacial interaction, thermal properties and mechanical properties. Polymer 44(16):4491–4499CrossRefGoogle Scholar
  34. 34.
    Dershem SM (2011) U.S. Patent No. 8,063,161. US Patent and Trademark Office, Washington, DCGoogle Scholar
  35. 35.
    Garchar HH, Shukla HN, Parsania PH (1991) Kinetics of formation of 1, 1′-bis (3-methyl-4-hydroxy phenyl) cyclohexane. In: Proceedings of the Indian Academy of Sciences-Chemical Sciences, Springer India, vol 103, No. 2, pp 149–153Google Scholar
  36. 36.
    Bai Y, Wang X, Wu D (2012) Novel cyclolinear cyclotriphosphazene-linked epoxy resin for halogen-free fire resistance: synthesis, characterization, and flammability characteristics. Ind Eng Chem Res 51(46):15064–15074CrossRefGoogle Scholar
  37. 37.
    Tsai MH, Whang WT (2001) Dynamic mechanical properties of polyimide/poly (silsesquioxane)-like hybrid films. J Appl Polym Sci 81(10):2500–2516CrossRefGoogle Scholar
  38. 38.
    Jang W, Shin D, Choi S, Park S, Han H (2007) Effects of internal linkage groups of fluorinated diamine on the optical and dielectric properties of polyimide thin films. Polymer 48(7):2130–2143CrossRefGoogle Scholar
  39. 39.
    Huang JC, He CB, Xiao Y, Mya KY, Dai J, Siow YP (2003) Polyimide/POSS nanocomposites: interfacial interaction, thermal properties and mechanical properties. Polymer 44(16):4491–4499CrossRefGoogle Scholar
  40. 40.
    Huang J, Lim PC, Shen L, Pallathadka PK, Zeng K, He C (2005) Cubic silsesquioxane–polyimide nanocomposites with improved thermomechanical and dielectric properties. Acta Mater 53(8):2395–2404CrossRefGoogle Scholar
  41. 41.
    Liu YL, Hsiue GH, Lee RH, Chiu YS (1997) Phosphorus-containing epoxy for flame retardant. III: Using phosphorylated diamines as curing agents. J Appl Polym Sci 63(7):895–901CrossRefGoogle Scholar
  42. 42.
    Liu YL, Chiu YC, Wu CS (2003) Preparation of silicon-/phosphorous-containing epoxy resins from the fusion process to bring a synergistic effect on improving the resins’ thermal stability and flame retardancy. J Appl Polym Sci 87(3):404–411CrossRefGoogle Scholar
  43. 43.
    Van Krevelen DW (1975) Some basic aspects of flame resistance of polymeric materials. Polymer 16(8):615–620CrossRefGoogle Scholar
  44. 44.
    Xiong Y, Jiang Z, Xie Y, Zhang X, Xu W (2013) Development of a DOPO-containing melamine epoxy hardeners and its thermal and flame-retardant properties of cured products. J Appl Polym Sci 127(6):4352–4358CrossRefGoogle Scholar
  45. 45.
    Qiu S, Ma C, Wang X, Zhou X, Feng X, Yuen RK, Hu Y (2018) Melamine-containing polyphosphazene wrapped ammonium polyphosphate: A novel multifunctional organic-inorganic hybrid flame retardant. J Hazard Mater 344:839–848CrossRefGoogle Scholar
  46. 46.
    Revathi R, Prabunathan P, Devaraju S, Alagar M (2015) Synthesis of soluble polyimides based on ether-linked cyclohexyldiamine and their ultraviolet shielding behavior. High Perform Polym 27(2):247–253CrossRefGoogle Scholar
  47. 47.
    Tamaki R, Tanaka Y, Asuncion MZ, Choi J, Laine RM (2001) Octa (aminophenyl) silsesquioxane as a nanoconstruction site. J Am Chem Soc 123(49):12416–12417CrossRefGoogle Scholar
  48. 48.
    Kim GH, Ramesh S, Kim JH, Jung D, Kim HS (2014) Cellulose-silica/gold nanomaterials for electronic applications. J Nanosci Nanotechnol 14(10):7495–7501CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Department of ChemistryVel Tech Multi Tech Dr. Rangarajan Dr Sakunthala Engineering CollegeAvadi, ChennaiIndia
  2. 2.Department of Handloom and Textile TechnologyIndian Institute of Handloom TechnologySalemIndia
  3. 3.Centre of Excellence for Advanced Material Manufacturing, Processing and Characterization (CoExAMMPC)Vignan’s UniversityVadlamudi, GunturIndia

Personalised recommendations