Advertisement

Polymer Bulletin

, Volume 76, Issue 1, pp 409–422 | Cite as

Thermal resistance and tensile properties studies on PVC-C/EVA submitted to 60Co γ-ray up to 50 KGy and thermal aging at 80 °C

  • Nabila Boutouchent-GuerfiEmail author
  • Ahmed Benaboura
  • Nadjib Drouiche
Original Paper
  • 28 Downloads

Abstract

The interest of mixing PVC-C and EVA with different concentrations (5–10–15–20%) is to combine the useful properties to develop a product resistant to thermal aging and gamma rays up to 50 KGy. In this study, the effect of aging on mechanical properties (tensile strength, elongation at break and Young modulus) and the changes induced in the thermal analysis and morphology due to gamma radiation was investigated. The results revealed that the gamma irradiation affected considerably the PVC-C properties at 50 KGy. This degradation is due to the chain scission, which caused a reduction in the average molecular weight and cross-linking rate on the one hand, but this degradation was not observed in PVC-C/EVA/20%.

Keywords

PVC-C Ethylene vinyl acetate copolymer Heat aging Mechanical properties Gamma radiation 

Notes

Acknowledgements

This work was supported by the Nuclear Research Center of Algeria (CRNA), telephone cable from Algeria (CATEL), electric cable from Algeria (CABEL) and Biskra Cable Industries Company from Algeria (ENICAB). The authors would like to thank to Dr. H. Ammi and Dr. M.M. Elarabi for their contribution and support.

References

  1. 1.
    Czanderna AW, Pern FJ (1996) Encapsulation of PV modules using ethylene vinyl acetate copolymer as a pottant: a critical review. Sol Energy Mater Sol Cells 43:101–181.  https://doi.org/10.1016/0927-0248(95)00150-6 CrossRefGoogle Scholar
  2. 2.
    Pern FJ, Czanderna AW (1992) Characterization of ethylene vinyl acetate (EVA), encapsulant: effects of thermal processing and weathering degradation on its discoloration. Sol Energy Mat Sol Cells 25:3–23.  https://doi.org/10.1016/0927-0248(92)90013-f CrossRefGoogle Scholar
  3. 3.
    Zhang W et al (2003) Effects of different kinds of clay and different vinyl acetate content on the morphology and properties of EVA/clay nanocomposites. Polymer 44:7953–7961.  https://doi.org/10.1016/j.polymer.2003.10.046 CrossRefGoogle Scholar
  4. 4.
    Alexandre M et al (2001) Preparation and properties of layered silicate nanocomposites based on ethylene vinyl acetate copolymers. Macromol Rapid Commun 22:643–646.  https://doi.org/10.1002/1521-3927(20010501)22:8%3C643::AID-MARC643%3E3.0.CO;2-%23 CrossRefGoogle Scholar
  5. 5.
    Sung-Seen C, Chae ES (2016) Novel analytical method for determination of contents of backbone and terminal/branch vinyl acetate groups of poly(ethylene-co-vinyl acetate) using deacetylation reaction. Polym Test 56:214–219.  https://doi.org/10.1016/j.polymertesting.2016.10.012 CrossRefGoogle Scholar
  6. 6.
    Xiaohu L, Isacsson U (2000) Modification of road bitumens with thermoplastic polymers. Polym Test 20:77–86.  https://doi.org/10.1016/s0142-9418(00)00004-0 CrossRefGoogle Scholar
  7. 7.
    Liu Y et al (2007) Morphology and fracture behaviour of poly(vinyl chloride)/ethylene-vinyl acetate copolymer blends. Polym Test 26:388–395.  https://doi.org/10.1016/j.polymertesting.2006.12.008 CrossRefGoogle Scholar
  8. 8.
    Thaumaturgo C, Monteiro EC (1997) Thermal stability and miscibility in PVC/EVA blends. Therm Anal 49:247–254.  https://doi.org/10.1007/bf01987445 CrossRefGoogle Scholar
  9. 9.
    Chaudhary DS et al (2005) Morphological influence on mechanical characterization of ethylene-vinyl acetate copolymer–clay nanocomposites. Polym Eng Sci 45:889–897.  https://doi.org/10.1002/pen.20349 CrossRefGoogle Scholar
  10. 10.
    Kim S, Drzal LT (2009) Comparison of exfoliated graphite nanoplatelets (xGnP) and CNTs for reinforcement of EVA nanocomposites fabricated by solution compounding method and three screw rotating systems. J Adhes Sci Technol 23:1623–1638.  https://doi.org/10.1163/156856109X440984 CrossRefGoogle Scholar
  11. 11.
    Tian Y et al (2004) Study on the structure and properties of EVA/clay nanocomposites. J Mater Sci 39:4301–4303.  https://doi.org/10.1023/b:jmsc.0000033412.92494.ee CrossRefGoogle Scholar
  12. 12.
    Qian D et al (2000) Load transfer and deformation mechanisms in carbon nanotube polystyrene composites. Appl Phys Lett 6:2868–2870.  https://doi.org/10.1063/1.126500 CrossRefGoogle Scholar
  13. 13.
    Yagoubi N et al (1995) Physico-chemical behaviour of β irradiated plastic materials currently used as packagings and medical products. Nucl Instrum Methods B 105:340–344.  https://doi.org/10.1016/0168-583X(95)00638-9 CrossRefGoogle Scholar
  14. 14.
    Cote SS et al (2007) Changes in mechanical properties due to gamma irradiation of high-density polyethylene (HDPE). Braz J Chem Eng 24:259–265.  https://doi.org/10.1590/S0104-66322007000200010 CrossRefGoogle Scholar
  15. 15.
    Chai CK et al (2016) Tensile properties and thermal stability of gamma irradiated epoxidized natural rubber latex with the presence of sensitizer. J Polym Mater 33:223–232. https://www.researchgate.net/profile/Chuah_Guan/publication/303879362_Tensile_Properties_and_Thermal_Stability_of_Gamma_Irradiated_Epoxidized_Natural_Rubber_Latex_with_the_Presence_of_Sensitizer/links/5788595e08aecf56ebcb5c7b.pdf
  16. 16.
    Chai CK, Ratnam CT, Abdullah LC, Mohamed Amin MSS, Wan Zin WM (2013) Effect of gamma radiation on the tensile properties of epoxidized natural rubber latex. Int J Inst Mater Malays 1:17–25 Google Scholar
  17. 17.
    Qian D et al (2000) Load transfer and deformation mechanisms incarbon nanotube-polystyrene composites. Appl Phys Lett 6:2868–2870.  https://doi.org/10.1063/1.126500 CrossRefGoogle Scholar
  18. 18.
    Saraca T et al (2016) Influence of γ-irradiation and temperature on the mechanical properties of EPDM cable insulation. Radiat Phys Chem 125:151–155.  https://doi.org/10.1016/j.radphyschem.2016.03.024 CrossRefGoogle Scholar
  19. 19.
    Kobra B et al (2016) Thermal resistance, tensile properties, and gamma radiation shielding performance of unsaturated polyester/nanoclay/PbO composites. Radiat Phys Chem 146:5–10.  https://doi.org/10.1016/j.radphyschem.2017.12.024 Google Scholar
  20. 20.
    Campi F et al (2014) A study of the behavior of bi-oriented PVC exposed to ionizing radiation and its possible use in nuclear applications. Radiat Phys Chem 99:86–91.  https://doi.org/10.1016/j.radphyschem.2014.02.018 CrossRefGoogle Scholar
  21. 21.
    Castañeda-Facio A et al (2014) Thermal stability of PVC formulations gamma irradiated at different dose rates. Radiat Phys Chem 97:75–80.  https://doi.org/10.1016/j.radphyschem.2013.11.004 CrossRefGoogle Scholar
  22. 22.
    Byun YJ et al (2007) Physical and chemical properties of γ-irradiation EVOH film. Radiat Phys Chem 76:974–981.  https://doi.org/10.1016/j.radphyschem.2006.09.005 CrossRefGoogle Scholar
  23. 23.
    Chalykh AE et al (2015) Mutual diffusion and self-diffusion in systems of poly(vinyl chloride) and copolymers of vinyl chloride and vinyl acetate. Polym Sci Ser A 57:58–66.  https://doi.org/10.1134/s0965545x15010010 CrossRefGoogle Scholar
  24. 24.
    Ravi HR et al (2012) Modification of dielectric and structural properties of PVC by gamma irradiation. Res Rev Polym 3:89–92. http://www.tsijournals.com/articles/modification-of-dielectric-and-structural-properties-of-pvc-by-gamma-irradiation.pdf
  25. 25.
    Folks MJ, Hope PS (1993) Polymer blend and alloys. Chapman and Hall, LondonCrossRefGoogle Scholar
  26. 26.
    Vinhasa GM, de Almeidad B et al (2003) Degradation studies on plasticized PVC Films submitted to gamma radiation. Mat Res 6:497–500.  https://doi.org/10.1590/S1516-14392003000400012 CrossRefGoogle Scholar
  27. 27.
    Labrosse M (1996) Plastiques, essais normalisés. Technique de l’ingénieur A 3521:1–8Google Scholar
  28. 28.
    Ikhuoria EU et al (2011) Effect of beta irradiation on plasticized poly(vinyl chloride). Afr J Pure Appl Chem 5:333–338. http://www.academicjournals.org/journal/AJPAC/article-full-text-pdf/804CD2F1506
  29. 29.
    Shen FW et al (1996) Irradiation of chemically crosslinked ultrahigh molecular weight polyethylene. J Polym Sci B 34:1063–1077.  https://doi.org/10.1002/(SICI)1099-0488(19960430)34:6<1063:AID-POLB4>3.0.CO;2-Z
  30. 30.
    Premnth V et al (1999) Molecular rearrangements in ultra-high molecular weight polyethylene after irradiation and long-term storage in air. Polymer 40:2215–2229.  https://doi.org/10.1016/S0032-3861(98)00438-8 CrossRefGoogle Scholar
  31. 31.
    Vinhasa GM et al (2003) Degradation studies on plasticized PVC films submited to gamma radiation. Mat Res 6:497–500.  https://doi.org/10.1590/S1516-14392003000400012 CrossRefGoogle Scholar
  32. 32.
    Krimm S et al (1963) Infrared spectra and assignments for polyvinyl chloride and deuterated analogs. J Polym Sci Part A 1:2621–2650.  https://doi.org/10.1002/pol.1963.100010809 Google Scholar
  33. 33.
    McNeill IC (1989) Comprehensive polymer science, vol 6. Pergamon Press, OxfordGoogle Scholar
  34. 34.
    Camino G et al (2000) Investigation of flame retardancy in EVA. Fire Matter 24:85–90.  https://doi.org/10.1002/1099-1018(200003/04)24:2<85:AID-FAM724>3.0.CO;2-T
  35. 35.
    Maurin MB et al (1991) Thermogravimetric analysis of ethylene-vinyl acetate copolymers with Fourier transform infrared analysis of the pyrolysis products. Thermochim Acta 186:97–102.  https://doi.org/10.1016/0040-6031(91)87026-S CrossRefGoogle Scholar
  36. 36.
    Oliveira AAM et al (1999) Mass diffusion-controlled bubbling and optimum schedule of thermal degradation of polymeric binders in molded powders. Int J Heat Mass Transf 42:3307–3329.  https://doi.org/10.1016/S0017-9310(98)90363-5 CrossRefGoogle Scholar
  37. 37.
    Yeh JT et al (1998) Combustion of polyethylenes filled with metallic hydroxides and ethylene vinyl acetate copolymer. Polym Degrad Stabil 61:465–472.  https://doi.org/10.1016/S0141-3910(97)00232-2 CrossRefGoogle Scholar
  38. 38.
    Moskala EJ, Lee DW (1989) The effects of miscibility on the thermal stability of poly(vinyl chloride) blends. Polym Degrad Stab 25:11–17.  https://doi.org/10.1016/0141-3910(89)90119-5 CrossRefGoogle Scholar
  39. 39.
    Shur YJ, Ranby B (1975) Gas permeation of polymer blends. I. PVC/ethylene-vinyl acetate copolymer (EVA). J Appl Polym Sci 19:1337–1346.  https://doi.org/10.1002/app.1975.070190513 CrossRefGoogle Scholar
  40. 40.
    Hernandez R et al (2000) The effect of a miscible and an immiscible polymeric modifier on the mechanical and rheological properties of PVC. Eur Polym J 36:1011–1025.  https://doi.org/10.1016/S0014-3057(99)00146-9 CrossRefGoogle Scholar
  41. 41.
    Baek T-M et al (1981) Rheology of poly(vinyl chloride) blends. J Vinyl Addit Technol 3:208–214.  https://doi.org/10.1002/vnl.730030403 CrossRefGoogle Scholar
  42. 42.
    Ying L et al (2007) Material behaviour morphology and fracture behaviour of poly(vinyl chloride)/ethylene-vinyl acetate copolymer blends. Polym Test 26:388–395.  https://doi.org/10.1016/j.polymertesting.2006.12.008 CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  • Nabila Boutouchent-Guerfi
    • 1
    • 2
    Email author
  • Ahmed Benaboura
    • 1
  • Nadjib Drouiche
    • 2
  1. 1.Laboratoire de synthèse macromoléculaire et thio-organique macromoléculaire, Faculté de chimieUniversité des Sciences et de la technologie Houari Boumédiène (USTHB)El Alia, Bab-Ezzouar, AlgiersAlgeria
  2. 2.Centre de Recherche en Technologie des Semi-conducteurs pour l’Energétique (CRTSE)AlgiersAlgeria

Personalised recommendations