Polymer Bulletin

, Volume 76, Issue 1, pp 291–301 | Cite as

PBAT/organoclay composite films—part 2: effect of UV aging on permeability, mechanical properties and biodegradation

  • Gabriella A. M. Falcão
  • Tatiara G. AlmeidaEmail author
  • Marcelo A. G. Bardi
  • Laura H. Carvalho
  • Eduardo L. Canedo
Original Paper


Biodegradable alternatives are required in order to minimize the environmental impacts caused by inadequate disposal of plastics, especially fast-discharge plastics such as those used in the packaging. This work studied the permeability, mechanical properties and biodegradability of PBAT/organoclay composite films. The materials were melt-mixed in an internal laboratory mixer, and films containing 1, 3 and 5% of organoclay were prepared in a chill roll extruder. The samples were subjected to UV radiation, and their properties were evaluated before and after accelerated aging. Results show that tensile properties, gas permeability and biodegradation depend on filler content and that oxygen and carbon dioxide permeabilities were affected by UV aging. Although the mechanical properties are negatively affected by filler incorporation, oxygen and carbon dioxide permeabilities decreased and biodegradability increased in the composites, making them an interesting option for use in packaging.


PBAT Organoclay Films Biodegradability UV aging 



The authors thank the Conselho Nacional de Pesquisa (CNPq) e Coordenação de Aperfeiçoamento de Pessoal Superior (CAPES), Grant # 473622/2013-0, for financial support.

Supplementary material

289_2018_2385_MOESM1_ESM.docx (20 kb)
Supplementary material 1 (DOCX 19 kb)


  1. 1.
    Ebnesajjad S (ed) (2013) Handbook of biopolymers and biodegradable plastics: properties, processing, and applications. Elsevier, AmsterdamGoogle Scholar
  2. 2.
    Bastioli C (ed) (2014) Handbook of biodegradable polymers, 2nd edn. Smithers Rapra Technology, ShawburyGoogle Scholar
  3. 3.
    Sisson AL, Schroeter M, Lendlein A (2011) Polyesters. In: Lendlein A, Sisson A (eds) Handbook of biodegradable polymers: isolation, synthesis, characterization and applications. Wiley, WeinheimGoogle Scholar
  4. 4.
    Zini E, Scandola M (2011) Green composites: an overview. Polym Compos 32:1905–1915CrossRefGoogle Scholar
  5. 5.
    Chieng BW (2010) Effect of organo-modified montmorillonite on poly(butylene succinate)/poly(butylene adipate-co-terephthalate) nanocomposites. Express Polym Lett 4:404–414CrossRefGoogle Scholar
  6. 6.
    Araújo PER, Ferreira KRM, Rapôso CO, Canedo EL, Carvalho LH, Silva SML (2009) Effect of clay/water ratio during bentonite organophilization on the characteristics of the organoclays and its polypropylene nanocomposites. Polym Eng Sci 49:1696–1702CrossRefGoogle Scholar
  7. 7.
    Rhim J-W, Park H-M, Há CS (2013) Bio-nanocomposites for food packaging applications. Prog Polym Sci 38:1629–1652CrossRefGoogle Scholar
  8. 8.
    Rhim J-W, Hong SI, Park HM, Ng PKW (2006) Preparation and characterization of chitosan-based nanocomposite films with antimicrobial activity. J Agric Food Chem 54:5814–5822CrossRefGoogle Scholar
  9. 9.
    Bi L, Yang L, Narsimhan G, Bhunia AK, Yao Y (2011) Designing carbohydrate nanoparticles for prolonged efficacy of antimicrobial peptide. J Controlled Release 150:150–156CrossRefGoogle Scholar
  10. 10.
    Wang X, Du Y, Yang J, Wang X, Shi X, Hu Y (2006) Preparation, characterization and antimicrobial activity of chitosan/layered silicate nanocomposites. Polymer 47:6738–6744CrossRefGoogle Scholar
  11. 11.
    Moustafa H, El Kissi N, Abou-Kandil AI, Abdel-Aziz MS, Dufresne A (2017) PLA/PBAT bionanocomposites with antimicrobial natural rosin for green packaging. ACS Appl Mater Interfaces 9:20132–20141CrossRefGoogle Scholar
  12. 12.
    Casarin SA, Agnelli JAM, Malmonge SM, Rosário F (2013) Blendas PHB/Copoliésteres Biodegradáveis-Biodegradação em Solo. Polímeros: Ciência e Tecnologia 23:115–122CrossRefGoogle Scholar
  13. 13.
    Mondal D, Bhowmick B, Maity D, Mollick MR, Rana D, Rangarajan V, Sen R, Chattopadhyay D (2015) Investigation on sodium benzoate release from poly(butylene adipate-co-terephthalate)/organoclay/sodium benzoate based nanocomposite film and their antimicrobial activity. J Food Sci 80:E602–E609CrossRefGoogle Scholar
  14. 14.
    Yamamoto M, Witt U, Skupin G, Beimborn D, Müller RJ (2002) Biodegradable aliphatic-aromatic polyesters: Ecoflex. In: Steinbüchel YDA (ed) Biopolymers-polyesters iii—applications and commercial products. Wiley, New York, p 299–312Google Scholar
  15. 15.
    Siegenthaler KO, Künkel A, Skupin G, Yamamoto M (2012) Ecoflex and Ecovio: biodegradable, performance-enabling plastics. Adv Polym Sci 241:91–136Google Scholar
  16. 16.
    Kijchavengkul T, Auras R, Rubino M, Selke S, Ngouano M, Fernandez RT (2010) Biodegradation and hydrolysis rate of aliphatic aromatic polyester. Polym Degrad Stab 95:2641–2647CrossRefGoogle Scholar
  17. 17.
    Kijchavengkul T, Auras R, Rubino M (2011) Formulation selection of aliphatic aromatic biodegradable polyester film exposed to UV/solar radiation. Polym Degrad Stab 96:1919–1926CrossRefGoogle Scholar
  18. 18.
    Pandey JK, Takagi H, Nakagaito AN, Kim H-J (2014) Handbook of polymer nanocomposites: processing performance and application. Springer, HeidelbergCrossRefGoogle Scholar
  19. 19.
    Raja V, Natesan R, Thiyagu T (2015) Preparation and mechanical properties of poly(butylene adipate-co-terephthalate) polyvinyl alcohol/SiO2 nanocomposite films for packaging applications. J Polym Mater 32:93–101Google Scholar
  20. 20.
    Someya Y, Kondo N, Shibata M (2007) Biodegradation of poly (butylene adipate-co-butylene terephthalate)/layered-silicate nanocomposites. J Appl Polym Sci 106:730–736CrossRefGoogle Scholar
  21. 21.
    Chen JH, Chen CC, Yang MC (2011) Characterization of nanocomposites of poly(butylene adipate-co-terephthalate) blending with Organoclay. J Polym Res 18:2151CrossRefGoogle Scholar
  22. 22.
    Falcão GA, Vitorino MBC, Almeida TG, Bardi MAG, Carvalho LH, Canedo EL (2017) PBAT/organoclay composite films: preparation and properties. Polym Bull 74:4423–4436CrossRefGoogle Scholar
  23. 23.
    Liu Q, Shaver A, Chen Y, Miller G, Paul DR, Riffle JS, McGrath JE, Freeman BD (2016) Effect of UV irradiation and physical aging on O2 and N2 transport properties of thin glassy poly(arylene ether ketone) copolymer films based on tetramethyl bisphenol A and 4,4′-difluorobenzophenone. Polymer 87:202–214CrossRefGoogle Scholar
  24. 24.
    Kim JH, Koros WJ, Paul DR (2006) Effects of CO2 exposure and physical aging on the gas permeability of thin 6FDA-based polyimide membranes: part 2. With crosslinking. J Membr Sci 282:32–43CrossRefGoogle Scholar
  25. 25.
    Fu Y-J, Hsiao S-W, Hu C-C, Qui H-Z, Lee K-R, Lai J-Y (2008) Effect of physical aging on sorption and permeation of small molecules in polyimide membranes. Desalination 234:58–65CrossRefGoogle Scholar
  26. 26.
    Rowe BW, Freeman BD, Paul DR (2011) Physical aging of membranes for gas separations. In: Drioli E, Barbieri G (eds) Membrane engineering for the treatment of gases, vol 1: gas-separation problems in membranes. Royal Society of Chemistry, London, pp 58–83CrossRefGoogle Scholar
  27. 27.
    Almeida TG, Costa ARM, Wellen RMR, Canedo EL, Carvalho LH (2017) PHB/bentonite compounds: effect of clay modification and thermal aging on properties. Mater Res 20:1503–1510CrossRefGoogle Scholar
  28. 28.
    Koller M (2014) Poly(hydroxyalkanoates) for food packaging: application and attempts towards implementation. Appl Food Biotechnol 1:3–15Google Scholar
  29. 29.
    Khosravi-Darani IK, Bucci DZ (2015) Application of poly(hydroxy alkanoate) in food packaging: improvements by nanotechnology. Chem Biochem Eng Q 29(2):275–285CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Department of Materials EngineeringFederal University of Campina GrandeCampina GrandeBrazil

Personalised recommendations