Polymer Bulletin

, Volume 76, Issue 1, pp 227–239 | Cite as

Effect of SiO2 nanoparticles on compression behavior of flexible polyurethane foam

  • Mohammad Hadi MoghimEmail author
  • Mozhgan Keshavarz
  • Seyed Mojtaba Zebarjad
Original Paper


In the current study, flexible polyurethane foam was reinforced with different contents of SiO2 nanoparticles (0.5–2 wt%). Compression test was performed in a range of strain rates (1–20 min−1), and compression set test was also done at different temperatures. Results showed that addition of SiO2 nanoparticles improved compression properties of PU foam and the sample with 0.5 wt% SiO2 nanoparticles exhibited the highest mechanical performance with about 180 and 40% improvements in the compressive plateau and densification stress. Strain rate was showing a positive effect on these parameters with the enhancements of 360 and 90%. It was also shown that the temperature had a remarkable effect on compression set behavior of nanocomposite as the values change from 0.5% at − 20 °C to near 79% at 100 °C. Finally, microscopy micrographs confirmed the appearance of larger cell pores and a greater tendency for incomplete cell opening with increasing SiO2 content.


Polyurethanes Foams Compression set Nanoparticles Composites 


  1. 1.
    Mahfuz H, Uddin MF, Rangari VK, Saha MC, Zainuddin S, Jeelani S (2005) High strain rate response of sandwich composites with nanophased cores. Appl Compos Mater 12:193–211CrossRefGoogle Scholar
  2. 2.
    Balch DK, O’Dwyer JG, Davis GR, Cady CM, Gray GT, Dunand DC (2005) Plasticity and damage in aluminum syntactic foams deformed under dynamic and quasi-static conditions. Mater Sci Eng A 391:408–417CrossRefGoogle Scholar
  3. 3.
    Lee LJ, Zeng C, Cao X, Han X, Shen J, Xu G (2005) Polymer nanocomposite foams. Compos Sci Technol 65:2344–2363CrossRefGoogle Scholar
  4. 4.
    Saha MC, Kabir ME, Jeelani S (2009) Effect of Nanoparticles on mode-I fracture toughness of polyurethane foams. Polym Compos 30:1058–1064CrossRefGoogle Scholar
  5. 5.
    Bernal MM, Molenberg I, Estravis S, Rodriguez-Perez MA, Huynen I, Lopez-Manchado MA, Verdejo R (2012) Comparing the effect of carbon-based nanofillers on the physical properties of flexible polyurethane foams. J Mater Sci 47:5673–5679CrossRefGoogle Scholar
  6. 6.
    Artavia LD, Macosko CW (1990) Foam kinetics. J Cell Plast 26:490–511CrossRefGoogle Scholar
  7. 7.
    Elwell MJ, Ryan AJ, Grunbauer HJM, VanLieshout HC (1996) An FT I.R. study of reaction kinetics and structure development in model flexible polyurethane foam systems. Polymer 37:1353–1361CrossRefGoogle Scholar
  8. 8.
    Sonnenschein MF, Prange R (2007) Mechanism for compression set of TDI polyurethane foams. Polymer 48:616–623CrossRefGoogle Scholar
  9. 9.
    Coons JE, McKay MD, Hamada MS (2006) A Bayesian analysis of the compression set and stress–strain behavior in a thermally aged silicone foam. Polym Degrad Stab 91:1824–1836CrossRefGoogle Scholar
  10. 10.
    Jaunich M, Stark W, Wolff D (2012) Comparison of low temperature properties of different elastomer materials investigated by a new method for compression set measurement. Polym Test 31:987–992CrossRefGoogle Scholar
  11. 11.
    Koberstein JT, Galambos AF, Leung LM (1992) Compression-molded polyurethane block copolymers. 1. Microdomain morphology and thermomechanical properties. Macromolecules 25:6195–6204CrossRefGoogle Scholar
  12. 12.
    Moreland JC, Wilkes GL, Turner RB (1994) Viscoelastic behavior of flexible slabstock polyurethane foams: dependence on temperature and relative humidity. I. Tensile and compression stress (load) relaxation. J Appl Polym Sci 52:549–568CrossRefGoogle Scholar
  13. 13.
    Slater C, Davis C, Strangwood M (2011) Compression set of thermoplastic polyurethane under different thermal-mechanical-moisture conditions. Polym Degrad Stab 96:2139–2144CrossRefGoogle Scholar
  14. 14.
    Skorpenske RG, Solis R, Kuklies RA, Schrock AK, Turner RB (1992) Compression set mechanisms in flexible polyurethane foam. Proc SPI Annu Tech Mark Conf 34:650–659Google Scholar
  15. 15.
    Chen L, Schadler LS, Ozisik R (2011) An experimental and theoretical investigation of the compressive properties of multi-walled carbon nanotube/poly(methyl methacrylate) nanocomposite foams. Polymer 52:2899–2909CrossRefGoogle Scholar
  16. 16.
    Antonietti M, Goltner C (1997) Superstructures of functional colloids: chemistry on the nanometer scale. Angew Chem Int Ed Engl 36:910–928CrossRefGoogle Scholar
  17. 17.
    Bandarian M, Shojaei A, Rashidi AM (2011) Thermal, mechanical and acoustic damping properties of flexible open-cell polyurethane/multi-walled carbon nanotube foams: effect of surface functionality of nanotubes. Polym Int 60:475–482CrossRefGoogle Scholar
  18. 18.
    Berta M, Lindsay C, Pans G, Camino G (2006) Effect of chemical structure on combustion and thermal behaviour of polyurethane elastomer layered silicate nanocomposites. Polym Degrad Stab 91:1179–1191CrossRefGoogle Scholar
  19. 19.
    Cao Y, Lai Z, Feng J, Wu P (2011) Graphene oxide sheets covalently functionalized with block copolymers via click chemistry as reinforcing fillers. J Mater Chem 21:9271–9278CrossRefGoogle Scholar
  20. 20.
    Verdejo R, Stampfli R, Alvarez-Lainez M, Mourad S, Rodriguez-Perez MA, Bruhwiler PA, Shaffer M (2009) Enhanced acoustic damping in flexible polyurethane foams filled with carbon nanotubes. Compos Sci Technol 69:1564–1569CrossRefGoogle Scholar
  21. 21.
    Yang Y, Gupta MC, Dudley KL, Lawrence RW (2005) Novel carbon nanotube–polystyrene foam composites for electromagnetic interference shielding. Nano Lett 5:2131–2134CrossRefGoogle Scholar
  22. 22.
    Thirumal M, Khastgir D, Singha NK-, Manjunath BS, Naik YP (2007) Mechanical, morphological and thermal properties of rigid polyurethane foam: effect of the fillers. Cell Polym 26:245–259CrossRefGoogle Scholar
  23. 23.
    Chen I, Ozisik R, Schadler LS (2010) The influence of carbon nanotube aspect ratio on the foam morphology of MWNT/PMMA nanocomposite foams. Polymer 51:2368–2375CrossRefGoogle Scholar
  24. 24.
    Widya T, Macosko CW (2005) Nanoclay-modified rigid polyurethane foam. J Macromol Sci B Phys 44:897–908CrossRefGoogle Scholar
  25. 25.
    Daniel IM, Cho JM, Werner BT (2013) Characterization and modeling of stain-rate-dependent behavior of polymeric foams. Compos A Appl Sci Manufacturing 45:70–78CrossRefGoogle Scholar
  26. 26.
    Moghim MH, Zebarjad SM (2016) Effect of strain rate on tensile properties of polyurethane/multi-walled carbon nanotube nanocomposite. J Vinyl add Technol 22:356–361CrossRefGoogle Scholar
  27. 27.
    Gómez-del Río T, Rodríguez J (2012) Compression yielding of epoxy: strain rate and temperature effect. Mater Des 35:369–373CrossRefGoogle Scholar
  28. 28.
    Shadlou S, Ahmadi-Moghadam B, Taheri F (2014) The effect of strain-rate on the tensile and compressive behavior of graphene reinforced epoxy/nanocomposites. Mater Des 59:439–447CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  • Mohammad Hadi Moghim
    • 1
    Email author
  • Mozhgan Keshavarz
    • 1
  • Seyed Mojtaba Zebarjad
    • 1
  1. 1.Department of Materials Science and Engineering, Engineering SchoolShiraz UniversityShirazIran

Personalised recommendations