Advertisement

Polymer Bulletin

, Volume 76, Issue 1, pp 271–289 | Cite as

Phase separation and surface properties of poly(propyl methacrylate-b-methyl methacrylate) diblock copolymers

  • Doris PospiechEmail author
  • Renata Choińska
  • Kathrin Eckstein
  • Dieter Jehnichen
  • Liane Häußler
  • Peter Friedel
  • Frank Simon
  • Uta Reuter
  • Brigitte Voit
Original Paper
  • 110 Downloads

Abstract

The phase separation and surface characteristics of poly(propyl methacrylate-b-methyl methacrylate) (PPrMA-b-PMMA) diblock copolymers were studied and compared to strongly phase-separated poly(pentyl methacrylate-b-methyl methacrylate) (PPMA-b-PMMA) block copolymers (BCPs). PPrMA-b-PMMA with varied compositions and molar masses was synthesized by living anionic polymerization. The phase separation was studied by DSC, SAXS, TEM and AFM. The experimental data were compared to the calculated phase diagram. PPrMA-b-PMMA BCPs were weakly phase-separated, and indications for the existence of a relative broad interface between the blocks were observed. Nevertheless, two ordered morphologies—hexagonally packed cylinders and lamellae—depending on the molar composition were distinguished. The phase separation in thin films was studied by AFM in comparison with PPMA-b-PMMA. The wetting behavior of the thin films was examined by contact angle measurements. The water contact angles on PPrMA-b-PMMA were clearly influenced by both blocks. XPS confirmed the presence of both blocks in the top surface layer, which was different to PPMA-b-PMMA diblock copolymers where the top layer consisted only of PPMA blocks. Thus, only the weakly phase-separated PPrMA-b-PMMA BCP system allowed the generation of phase-separated films with tunable wetting characteristics.

Keywords

Methacrylic diblock copolymers Nanophase separation Thin film Wetting 

Notes

Acknowledgements

The authors would like to thank Deutsche Forschungsgemeinschaft (DFG Po 575/7-1) for financial support of R. Choińska (Keska). Furthermore, valuable technical contributions of Mrs. K. Pöschel (wetting measurements), Mrs. P. Treppe (SEC), Mrs. K. Arnhold (TGA) and Mr. A. Janke (AFM of one sample), all IPF Dresden, are gratefully acknowledged.

References

  1. 1.
    Kim H-C, Park S-M, Hinsberg WD (2010) Block copolymer based nanostructures: materials, processes, and applications to electronics. Chem Rev 110:146–177CrossRefGoogle Scholar
  2. 2.
    Park C, Yoon J, Thomas JL (2003) Enabling nanotechnology with self-assembled block copolymer patterns. Polymer 44:6725–6760CrossRefGoogle Scholar
  3. 3.
    Ortiz RP, Facchetti A, Marks TJ (2010) High-k organic, inorganic, and hybrid dielectrics for low-voltage organic field-effect transistors. Chem Rev 110:205–239CrossRefGoogle Scholar
  4. 4.
    Cheng JY, Ross CA, Smith HI, Thomas EL (2006) Templated self-assembly of block copolymers: top-down helps bottom-up. Adv Mater 18:2505–2521.  https://doi.org/10.1002/adma.200502651 CrossRefGoogle Scholar
  5. 5.
    Grzelczak M, Vermant J, Furst EM, Liz-Marzán LM (2010) Directed self-assembly of nanoparticles. ACS Nano 4(7):3591–3605.  https://doi.org/10.1021/nn100869j CrossRefGoogle Scholar
  6. 6.
    Keska R, Pospiech D, Eckstein K, Jehnichen D, Ptacek S, Häußler L, Friedel P, Janke A, Voit B (2006) Study of the phase behavior of poly(pentyl methacrylate-b-methyl methacrylate) diblock copolymers. J Nanostruct Polym Nanocompos 2(02):43–51Google Scholar
  7. 7.
    Scherble J, Stark B, Stühn B, Kressler J, Budde H, Höring S, Schubert DW, Simon P, Stamm M (1999) Comparison of interfacial width of block copolymers of d8- poly(methyl methacrylate) with various poly(n-alkyl methacrylate)s and the respective homopolymer pairs as measured by neutron reflection. Macromolecules 32:1859–1864CrossRefGoogle Scholar
  8. 8.
    Khandpur AK, Förster S, Bates FS, Hamley IW, Ryan AJ, Bras W, Almdal K, Mortensen K (1995) Polyisoprene-polystyrene diblock copolymer phase diagram near the order-disorder transition. Macromolecules 28:8796–8806CrossRefGoogle Scholar
  9. 9.
    Schulz MF, Khandpur AK, Bates FS, Almdal K, Mortensen K, Hajduk DA, Gruner SM (1996) Phase behavior of polystyrene-poly(2-vinylpiridine) diblock copolymers. Macromolecules 29:2857–2867CrossRefGoogle Scholar
  10. 10.
    Floudas G, Vazaiou B, Schipper F, Wiesner UR, Iatrou H, Hadjichristidis N (2001) Poly(ethylene oxide-b-isoprene) diblock copolymer phase diagram. Macromolecules 34:2947–2957CrossRefGoogle Scholar
  11. 11.
    Lee S, Gillard TM, Bates FS (2013) Fluctuations, order, and disorder in short diblock copolymers. AIChE J 59(9):3502–3513CrossRefGoogle Scholar
  12. 12.
    Kwon HK, Lopez VE, Davis RL, Kim SY, Burns AB, Register RA (2014) Polystyrene-poly(2-ethylhexylmethacrylate) block copolymers: synthesis, bulk phase behavior, and thin film structure. Polymer 55:2059–2067CrossRefGoogle Scholar
  13. 13.
    Takagi H, Yamamoto K, Okamoto S, Sakurai S (2015) A study on the phase behavior of poly(ε-caprolactone)-poly(butadiene) diblock copolymers: the influence of relatively low-molecular-weight block copolymers on the order-disorder transition behavior. Polymer 67:20–27CrossRefGoogle Scholar
  14. 14.
    Allen RD, Long TE, McGrath JE (1986) Preparation of high purity, anionic polymerization grade alkyl methacrylate monomers. Polym Bull 15:127–134CrossRefGoogle Scholar
  15. 15.
    Gilman H, Haubein AH (1944) The quantitative analysis of alkyllithium compounds. J Am Chem Soc 66:1515–1516CrossRefGoogle Scholar
  16. 16.
    Antoun S, Wang JS, Jérome R, Teyssie P (1996) Anionic polymerization of various methacrylates initiated with LiCl-complexed sBuLi. Polymer 37:5755–5759CrossRefGoogle Scholar
  17. 17.
    Werner SM, Pospiech D, Jehnichen D, Eckstein K, Komber H, Friedel P, Janke A, Näther F, Reuter U, Voit B, Taurino R, Messori M (2011) Synthesis and phase-separation behavior of α,ω-difunctionalized diblock copolymers. J Polym Sci A Polym Chem 49:926–937CrossRefGoogle Scholar
  18. 18.
    Magonov SN, Elings V, Whangbo M-H (1997) Phase imaging and stiffness in tapping-mode atomic force microscopy. Surf Sci 375:L385–L391CrossRefGoogle Scholar
  19. 19.
    Tavana H, Neumann AW (2007) Recent progress in the determination of solid surface tensions from contact angles. Adv Colloid Interf Sci 132:1–32CrossRefGoogle Scholar
  20. 20.
    Grundke K (2001) Wetting, spreading and penetration. In: Holmberg K (ed) Handbook of applied surface and colloid chemistry. Wiley, Hoboken, pp 119–142Google Scholar
  21. 21.
    Spelt JK, Li D (1996) The equation of state approach to interfacial tensions. In: Neumann AW, Spelt JK (eds) Applied surface thermodynamics, surfactant science series, vol 63. Marcel Dekker, New York, pp 239–292CrossRefGoogle Scholar
  22. 22.
    Kwok DY, Neumann AW (1999) Contact angle measurement and contact angle interpretation. Adv Colloid Interf Sci 81:167–249CrossRefGoogle Scholar
  23. 23.
    Friedel P, John A, Netz R, Pospiech D, Jehnichen D (2002) Modeling of the phase separation behaviour of semiflexible diblock copolymers. Macromol Theory Simul 11:785–793CrossRefGoogle Scholar
  24. 24.
    Benoit H, Hadziioannou G (1988) Scattering theory and properties of block copolymers with various architecture in the homogeneous bulk state. Macromolecules 21:1449–1464CrossRefGoogle Scholar
  25. 25.
    Pospiech D, Jehnichen D, Eckstein K, Scheibe P, Komber H, Sahre K, Janke A, Reuter U, Häußler L, Schellkopf L, Friedel P, Voit B (2017) Semifluorinated PMMA block copolymers: synthesis, nanostructure and thin film properties. Macromol Chem Phys 218:1600599.  https://doi.org/10.1002/macp.201600599 CrossRefGoogle Scholar
  26. 26.
    Fedors RF (1974) A method for estimating both the solubility parameters and the molar volumes of liquids. Polym Eng Sci 14:147–154CrossRefGoogle Scholar
  27. 27.
    Pospiech D, Gottwald A, Jehnichen D, Friedel P, John A, Harnisch C, Voigt D, Khimich G, Bilibin AY (2002) Determination of interaction parameters of block copolymers containing aromatic polyesters from solubility parameters obtained from solution viscosities. Colloid Polym Sci 280:1027–1037CrossRefGoogle Scholar
  28. 28.
    Keska R (2006) Study of the phase behavior of poly(n-alkyl methacrylate-b-methyl methacrylate) diblock copolymers and its influence on the wettability of polymer surfaces, PhD Thesis, Technische Universität Dresden, http://nbn-resolving.de/urn:nbn:de:swb:14-1169916108434-40600
  29. 29.
    John A, Friedel P, Netz R, Pospiech D, Jehnichen D, Gottwald A (2004) Modelling of the phase separation behaviour of semiflexible and polydisperse diblock copolymers. Macromol Theory Simul 13:702–710CrossRefGoogle Scholar
  30. 30.
    Manring LE (1988) Thermal degradation of saturated poly(methy1 methacrylate). Macromolecules 21:528–530CrossRefGoogle Scholar
  31. 31.
    Jehnichen D, Pospiech D, Friedel P, He G, Sepe A, Zhang J, Papadakis CM, Taurino R, Perlich J (2015) Thin-film morphologies of block copolymers with nanoparticles. Powder Diffr 30:S16–S24.  https://doi.org/10.1017/S0885715615000020 CrossRefGoogle Scholar
  32. 32.
    Hashimoto T, Kawamura T, Harada M, Tanaka M (1994) Small-angle scattering from hexagonally packed cylindrical particles with paracrystalline distortion. Macromolecules 27:3063–3072CrossRefGoogle Scholar
  33. 33.
    Sakurai S, Umeda H, Furukawa C, Irie H, Nomura S, Hyun H, Kim JK (1998) Thermally induced morphological transition from lamella to gyroid in a binary blend of diblock copolymers. J Chem Phys 108(10):4333–4339CrossRefGoogle Scholar
  34. 34.
    Jehnichen D, Pospiech D, Ptacek S, Eckstein K, Friedel P, Janke A, Papadakis CM (2009) Nanophase-separated diblock copolymers: structure investigations on PPMA-b-PMMA using X-ray scattering methods. Z Kristallogr Suppl 30:485–490.  https://doi.org/10.1524/zksu.2009.0072 CrossRefGoogle Scholar
  35. 35.
    Leibler L (1980) Theory of microphase separation in block copolymers. Macromolecules 13:1602–1617CrossRefGoogle Scholar
  36. 36.
    Bates FS, Fredrickson GH (1999) Block copolymers-designer soft materials. Phys Today 2:32–38CrossRefGoogle Scholar
  37. 37.
    Matsen MW, Bates FS (1996) Unifying weak- and strong-segregation block copolymer theories. Macromolecules 429:1091–1098CrossRefGoogle Scholar
  38. 38.
    Fox TG (1956) Effect of diluent and of copolymer composition on the glass temperature of a polymer system. Bull Am Phys Soc 1:123–125Google Scholar
  39. 39.
    Shirley AD (1972) High-resolution X-ray photoemission spectrum of the valence bands of gold. Phys Rev B 5:4709–4714CrossRefGoogle Scholar
  40. 40.
    Rehse N, Knoll A, Magerle R, Krausch G (2003) Surface reconstruction of lamellar ABC triblock copolymer mesostructure. Macromolecules 36:3261–3271CrossRefGoogle Scholar
  41. 41.
    Russell TP, Menelle A, Anastasiadis SH, Satija SK, Majkrzak CF (1991) Unconventional morphologies of symmetric diblock copolymers due to the film thickness constraints. Macromolecules 24:6263–6269CrossRefGoogle Scholar
  42. 42.
    Wulf M, Grundke K, Kwok DY, Neumann AW (2000) Influence of different alkyl side chains on the solid surface tension of polymethacrylates. J Appl Polym Sci 77:2493–2504CrossRefGoogle Scholar
  43. 43.
    Keska R, Pospiech D, Eckstein K, Jehnichen D, Friedel P, Grundke K, Voit B (2006) Nanostructured poly(pentyl methacrylat)-block-poly(methyl methacrylate) diblock copolymers: influence of the chemical structure on the wettability. Macromol Biosci 6(2):F12–F14Google Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Prof. Wacław Dąbrowski Institute of Agricultural and Food BiotechnologyWarsawPoland
  2. 2.Leibniz-Institut für Polymerforschung Dresden e.VDresdenGermany
  3. 3.Technische Universität Dresden, Organic Chemistry of PolymersDresdenGermany

Personalised recommendations