Advertisement

Polymer Bulletin

, Volume 76, Issue 1, pp 511–521 | Cite as

Thermomechanical behaviour of zirconia–multiwalled carbon nanotube-reinforced polypropylene hybrid composites

  • Babulal Chaudhary
  • Vinay Panwar
  • Tushar Roy
  • Kaushik PalEmail author
Original Paper
  • 62 Downloads

Abstract

The present investigation reveals the effect of addition of zirconia-coated multiwalled carbon nanotubes (MWCNTs) on mechanical and thermal properties of polypropylene (PP) matrix composites. Initially, zirconia coating on MWCNTs (ZrO2–CNT) has been performed with the help of isothermal hydroxylation technique and confirmed through typical microstructural and morphological characterizations. Thereafter, the effect of zirconia of mechanical and thermal properties of PP matrix composites has been studied through comparing the thermal decomposition behaviour, tensile and thermomechanical properties of pure PP, MWCNT-reinforced PP composite and ZrO2–CNT-reinforced PP hybrid composite. In short, the addition of 5 wt% CNTs improved tensile modulus by 22%, tensile strength by 16% and storage modulus by 45%, while the addition of same amount of ZrO2–CNT improved the above sequenced properties by 44, 47 and 73%, respectively. Moreover, ZrO2–CNT/PP hybrid composite has been found to have better thermally stability than pure PP as well as CNT/PP composite.

References

  1. 1.
    Guidetti GP, Rigosi GL, Marzola R (1996) The use of polypropylene in pipeline coatings. Prog Org Coat 27:79–85CrossRefGoogle Scholar
  2. 2.
    Weber A (1990) Recent applications for polypropylene in electrical and automotive engineering. Plast Rubber Process Appl 14:65–70Google Scholar
  3. 3.
    Jansz J (1999) Polypropylene in automotive applications. In: Karger-Kocsis J (ed) Polypropylene, vol 2. Polymer science and technology Series. Springer, DordrechtCrossRefGoogle Scholar
  4. 4.
    Lyu M-Y, Choi TG (2015) Research trends in polymer materials for use in lightweight vehicles. Int J Precis Eng Manuf 16:213–220CrossRefGoogle Scholar
  5. 5.
    Maddah HA (2016) Polypropylene as a promising plastic: a review. Am J Polym Sci 6:1–11Google Scholar
  6. 6.
    Yoshino K, Demura T, Kawahigashi M, Miyashita Y, Kurahashi K, Matsuda Y (2004) Application of a novel polypropylene to the insulation of an electric power cable. Electr Eng Jpn 146:18–26CrossRefGoogle Scholar
  7. 7.
    Hattum FWJV, Bernardo CA (1999) A study of the thermomechanical properties of carbon fiber-polypropylene composites. Polym Compos 20:683–688CrossRefGoogle Scholar
  8. 8.
    Bahlouli N, Pessey D, Raveyre C, Guillet J, Ahzi S, Dahoun A, Hiver JM (2012) Recycling effects on the rheological and thermomechanical properties of polypropylene-based composites. Mater Des 33:451–458CrossRefGoogle Scholar
  9. 9.
    Yu MF, Lourie O, Dyer MJ, Moloni K, Kelly TF, Ruoff RS (2000) Strength and breaking mechanism of multiwalled carbon nanotubes under tensile load. Science 287:637–640CrossRefGoogle Scholar
  10. 10.
    Wildoer JWG, Venema LC, Rinzler AG, Smalley RE, Dekker C (1998) Electronic structure of atomically resolved carbon nanotubes. Nature 391:59–62CrossRefGoogle Scholar
  11. 11.
    Baughman RH, Zakhidov AA, de Heer WA (2002) Carbon nanotubes—the route toward applications. Science 297:787–792CrossRefGoogle Scholar
  12. 12.
    Andrews R, Weisenberger MC (2004) Carbon nanotube polymer composites. Curr Opin Solid State Mater Sci 8:31–37CrossRefGoogle Scholar
  13. 13.
    Ci L, Suhr J, Pushparaj V, Zhang X, Ajayan PM (2008) Continuous carbon nanotube reinforced composites. Nano Lett 8:2762–2766CrossRefGoogle Scholar
  14. 14.
    Spitalsky Z, Tasis D, Papagelis K, Galiotis C (2010) Carbon nanotube–polymer composites: chemistry, processing, mechanical and electrical properties. Prog Polym Sci 35:357–401CrossRefGoogle Scholar
  15. 15.
    Lau KT, Gu C, Hui D (2006) A critical review on nanotube and nanotube/nanoclay related polymer composite materials. Compos Part B 37:425–436CrossRefGoogle Scholar
  16. 16.
    Coleman JN, Khan U, Blau WJ, Gun’ko YK (2006) Small but strong: a review of the mechanical properties of carbon nanotube–polymer composites. Carbon 44:1624–1652CrossRefGoogle Scholar
  17. 17.
    Kingston C, Zepp R, Andrady A, Boverhof D, Fehir R, Hawkins D, Roberts J, Sayre P, Shelton B, Sultan Y, Vejins V, Wohlleben W (2014) Release characteristics of selected carbon nanotube polymer composites. Carbon 68:33–57CrossRefGoogle Scholar
  18. 18.
    Vargas-Bernal R, Herrera-Perez G, Calixto-Olalde ME, Tecpoyotl-Torres M (2013) Analysis of DC electrical conductivity models of carbon nanotube-polymer composites with potential application to nanometric electronic devices. J Electr Comput Eng 2013:179538Google Scholar
  19. 19.
    Arash B, Wang Q, Varadan VK (2014) Mechanical properties of carbon nanotube/polymer composites. Sci Rep 4:6479CrossRefGoogle Scholar
  20. 20.
    Medvedovski E (2001) Wear-resistant engineering ceramics. Wear 249:821–828CrossRefGoogle Scholar
  21. 21.
    Roualdes O, Duclos M-E, Gutknecht D, Frappart L, Chevalier J, Hartmann DJ (2010) In vitro and in vivo evaluation of an alumina–zirconia composite for arthroplasty applications. Biomaterials 31:2043–2054CrossRefGoogle Scholar
  22. 22.
    Oetzel C, Clasen R (2006) Preparation of zirconia dental crowns via electrophoretic deposition. J Mater Sci 41:8130–8137CrossRefGoogle Scholar
  23. 23.
    He X, Zhang YZ, Mansell EJP, Su EB (2008) Zirconia toughened alumina ceramic foams for potential bone graft applications: fabrication, bioactivation, and cellular responses. J Mater Sci Mater Med 19:2743–2749CrossRefGoogle Scholar
  24. 24.
    Bosetti M, Verne E, Ferraris M, Ravaglioli A, Cannas M (2001) In vitro characterization of zirconia coated by bioactive glass. Biomaterials 22:987–994CrossRefGoogle Scholar
  25. 25.
    Lee J-H (2003) Review on zirconia air-fuel ratio sensors for automotive applications. J Mater Sci 38:4247–4257CrossRefGoogle Scholar
  26. 26.
    Luo J, Ball RJ, Stevens R (2004) Gadolinia doped ceria/yttria stabilised zirconia electrolytes for solid oxide fuel cell applications. J Mater Sci 39:235–240CrossRefGoogle Scholar
  27. 27.
    Huang S, Li L, Vleugels J, Wang P, Biest OV (2003) Thermodynamic prediction of the nonstoichiometric phase Zr1−zCezO2−x in the ZrO2–CeO1.5–CeO2 system. J Eur Ceram Soc 23:99–106CrossRefGoogle Scholar
  28. 28.
    Krumov E, Dikova J, Starbova K, Popov D, Blaskov V, Kolev K, Laude LD (2003) Thin ZrO2 sol–gel films for catalytic application. J Mater Sci: Mater Electron 14:759–760Google Scholar
  29. 29.
    Zhu H, Jia C, Li J, Zhao J, Song J, Yao Y, Xie Z (2012) Microstructure and high temperature wear of the aluminum matrix composites fabricated by reaction from Al–ZrO2–B elemental powders. Powder Technol 217:401–408CrossRefGoogle Scholar
  30. 30.
    Abdizadeha H, Baghchesara MA (2013) Investigation on mechanical properties and fracture behavior of A356 aluminum alloy based ZrO2 particle reinforced metal-matrix composites. Ceram Int 39:2045–2050CrossRefGoogle Scholar
  31. 31.
    Liu J, Yan H, Reece MJ, Jiang K (2012) Toughening of zirconia/alumina composites by the addition of graphene platelets. J Eur Ceram Soc 32:4185–4193CrossRefGoogle Scholar
  32. 32.
    Pal K, Kang DJ, Zhang ZX, Kim JK (2010) Synergistic effects of zirconia-coated carbon nanotube on crystalline structure of polyvinylidene fluoride nanocomposites: electrical properties and flame-retardant behaviour. Langmuir 26:3609CrossRefGoogle Scholar
  33. 33.
    Pal K, Kang DJ, Zhang ZX, Kim JK (2011) Microstructural investigations of zirconium oxide on core-shell structure of carbon nanotubes. J Nanopart Res 13:2597–2607CrossRefGoogle Scholar
  34. 34.
    Cheema TA, Garnweitner G (2014) Phase-controlled synthesis of ZrO2 nanoparticles for highly transparent dielectric thin films. CrystEngComm 16:3366–3375CrossRefGoogle Scholar
  35. 35.
    Yildirim A, Seckin T (2014) In situ preparation of polyether amine functionalized MWCNT nanofiller as reinforcing agents. Adv Mater Sci Eng 2014:356920Google Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Centre of NanotechnologyIndian Institute of Technology RoorkeeRoorkeeIndia
  2. 2.Department of Mechanical and Industrial EngineeringIndian Institute of Technology RoorkeeRoorkeeIndia
  3. 3.Department of Mechanical EngineeringSRM Institute of Science and TechnologyModinagarIndia

Personalised recommendations