Advertisement

Polymer Bulletin

, Volume 76, Issue 1, pp 241–257 | Cite as

Modification and thermal properties of syndiotactic-1,2-polybutadiene

  • Naofumi NagaEmail author
  • Shigenori Ishinoda
  • Hiroki Ishiguro
  • Gaku Ishikawa
  • Keiichi Noguchi
Original Paper
  • 71 Downloads

Abstract

Side chain of syndiotactic-1,2-polybutadiene (SPBU) has been modified by means of hydrogenation, hydrosilylation with trialkylsilane compounds, or thiol–ene reaction with alkyl thiol compounds. Crystallization temperature (Tc) of the resulting polymers, which was detected on the cooling process from melting state, decreased with increasing the modification ratio. The molecular bulkiness of the compounds affected the degree of the Tc depression with increasing the modification ratio. The modification of SPBU with triphenyl silane increased glass transition temperature of the polymers. Isothermally crystallized SPBU samples modified by butane thiol (BT) showed two melting peaks derived from first crystallization (Tm1, higher temperature) and second crystallization (Tm2, lower temperature). The Tm1 decreased with increasing the modification ratio, whereas the Tm2 was almost independent of the modification ratio. The equilibrium melting temperatures of the Tm1s of the SPBU samples modified by BT were decreased with increasing the modification ratio. By contrast, the modification ratio did not affect the equilibrium melting temperatures of the Tm2s. Slopes in Hoffman–Week’s plot the modified SPBU samples indicated that Tm1 and Tm2 were originated from lamellar crystal and fringed micelle, respectively.

Keywords

Syndiotactic-1,2-polybutadiene Modification Side chain Crystallization Melting 

Supplementary material

289_2018_2380_MOESM1_ESM.docx (2.2 mb)
Supplementary material 1 (DOCX 2295 kb)

References

  1. 1.
    Obata Y, Homma C, Tosaki C (1975) Bulk properties of syndiotactic 1,2-polybutadiene. III. Melting and crystallization properties. Polym J 7:312–319.  https://doi.org/10.1295/polymj.7.312 CrossRefGoogle Scholar
  2. 2.
    Sasaki T, Sunago H, Hoshikawa T (2003) Multiple melting behavior of syndiotactic 1,2-polybutadiene. Polym Eng Sci 43:629–638.  https://doi.org/10.1002/pen.10051 CrossRefGoogle Scholar
  3. 3.
    Bertini F, Canetti M, Ricci G (2004) Crystallization and melting behavior of 1,2-syndiotactic polybutadiene. J Appl Polym Sci 92:1680–1687.  https://doi.org/10.1002/app.20115 CrossRefGoogle Scholar
  4. 4.
    Ren M, Chen Q, Song J, Zhang H, Sun X, Mo Z, Zhang H, Zhang X, Jiang L (2005) Crystallization kinetics and melting behavior of syndiotactic 1,2-polybutadiene. J Polym Sci Part B Polym Phys 43:553–561.  https://doi.org/10.1002/polb.20361 CrossRefGoogle Scholar
  5. 5.
    Napolitano R, Pirozzi B, Esposito S (2006) Structural studies on syndiotactic 1,2-poly(1,3-butadiene) by x-ray measurements and molecular mechanics calculations. Macromol Chem Phys 207:503–510.  https://doi.org/10.1002/macp.200500507 CrossRefGoogle Scholar
  6. 6.
    Napolitano R, Pirozzi B, Esposito S (2006) Thermal expansion coefficients of the axes of the unit cell of syndiotactic 1,2-poly(1,3-butadiene). Macromol Symp 234:111–116.  https://doi.org/10.1002/masy.200650215 CrossRefGoogle Scholar
  7. 7.
    Naga N, Mizunuma K, Sadatoshi H, Kakugo M (1997) Properties and crystalline structures of syndiotactic poly(propylene-co-1-butene). Macromolecules 30:2197–2200.  https://doi.org/10.1021/ma961438f CrossRefGoogle Scholar
  8. 8.
    Naga N, Mizunuma K, Sadatoshi H, Kakugo M (2000) Isothermal crystallization of syndiotactic poly(propylene-co-olefin)s. Polymer 41:203–209.  https://doi.org/10.1016/S0032-3861(99)00163-9 CrossRefGoogle Scholar
  9. 9.
    Naga N, Sakurai T, Furukawa H (2015) Structure and formation process of syndiotactic-polystyrene or styrene-based copolymer-organic solvent gels studied using scanning microscopic light scattering. Polym J 47:45–52.  https://doi.org/10.1038/pj.2014.85 CrossRefGoogle Scholar
  10. 10.
    Natta G, Corradini P (1956) The structure of crystalline 1,2-polybutadiene and of other “syndyotactic polymers. J Polym Sci 20:251–266.  https://doi.org/10.1002/pol.1956.120209503 CrossRefGoogle Scholar
  11. 11.
    Abdullin MI, Glazyrin AB, Kukovinets OS, Basyrov AA, Zaikov GE (2016) Chemical modification of syndiotactic 1,2-polybutadiene. In: Berlin AA, Joswik R, Ivanovich VN (eds) The chemistry and physics of engineering materials, Modern analytical methodologies, vol 1. Apple Academic Press Inc., Oakville, pp 1–19Google Scholar
  12. 12.
    Guo X, Farwaha R, Rempel GL (1990) Catalytic hydrosilylation of diene-based polymers. 1. Hydrosilylation of polybutadiene. Macromolecules 23:5047–5054.  https://doi.org/10.1021/ma00226a001 CrossRefGoogle Scholar
  13. 13.
    Rendon S, Burghardt WR, Auad ML, Kornfield JA (2007) Shear-induced alignment of smectic side group liquid crystalline polymers. Macromolecules 40:6624–6630.  https://doi.org/10.1021/ma062912c CrossRefGoogle Scholar
  14. 14.
    You L, Schlaad H (2006) An easy way to sugar-containing polymer vesicles or glycosomes. J Am Chem Soc 128:13336–13337.  https://doi.org/10.1021/ja064569x CrossRefGoogle Scholar
  15. 15.
    Wickard TD, Nelsen E, Madaan N, Brummelhuis NT, Diehl C, Schlaad H, Davis RC, Linford MR (2010) Attachment of polybutadienes to hydrogen-terminated silicon and post-derivatization of the adsorbed species. Langmuir 26:1923–1928.  https://doi.org/10.1021/la902760r CrossRefGoogle Scholar
  16. 16.
    Hordyjewicz-Baran Z, You L, Smarsly B, Sigel R, Schlaad H (2007) Bioinspired polymer vesicles based on hydrophilically modified polybutadienes. Macromolecules 40:3901–3903.  https://doi.org/10.1021/ma070347n CrossRefGoogle Scholar
  17. 17.
    Ameri David RL, Kornfield JA (2008) Facile, efficient routes to diverse protected thiols and to their deprotection and addition to create functional polymers by thiol–ene coupling. Macromolecules 41:1151–1161.  https://doi.org/10.1021/ma0718393 CrossRefGoogle Scholar
  18. 18.
    Korthals B, Morant-Miñana MC, Schmid M, Mecking S (2010) Functionalization of polymer nanoparticles by thiol–ene addition. Macromolecules 43:8071–8078.  https://doi.org/10.1021/ma100966w CrossRefGoogle Scholar
  19. 19.
    ten Brummelhuis N, Diehl C, Schlaad H (2008) Thiol–ene modification of 1,2-polybutadiene using UV light or sunlight. Macromolecules 41:9946–9947.  https://doi.org/10.1021/ma802047w CrossRefGoogle Scholar
  20. 20.
    Lotti L, Coiai S, Ciardelli F, Galimberti M, Passaglia E (2009) Thiol–ene radical addition of l-cysteine derivatives to low molecular weight polybutadiene. Macromol Chem Phys 210:14711483.  https://doi.org/10.1002/macp.200900164 CrossRefGoogle Scholar
  21. 21.
    Justynska J, Hordyjewicz Z, Schlaad H (2005) Toward a toolbox of functional block copolymers via free-radical addition of mercaptans. Polymer 46:12057–12064.  https://doi.org/10.1016/j.polymer.2005.10.104 CrossRefGoogle Scholar
  22. 22.
    1H NMR spectra of SPBU samples modified by TES (TES-4) or DMPS (DMPS-4) are available in Supporting InformationGoogle Scholar
  23. 23.
    Analysis method to determine the molecular structure of the modified samples is precisely described in Supporting InformationGoogle Scholar
  24. 24.
    DSC profiles of SPBU samples on the cooling process are available in Supporting InformationGoogle Scholar
  25. 25.
    Hosada S, Nomura H, Gotoh Y, Kihara H (1990) Degree of branch inclusion into the lamellar crystal for various ethylene/α-olefin copolymers. Polymer 31:1999–2005.  https://doi.org/10.1016/0032-3861(90)90030-3 CrossRefGoogle Scholar
  26. 26.
    DSC profiles of SPBU samples on the heating process are available in Supporting InformationGoogle Scholar
  27. 27.
    Hoffman JD, Week JJ (1962) Melting process and equilibrium melting temperature of poly(chlorotrifluoroethylene). J Res Natl Bur. Stand A Phys Chem 66:13–28CrossRefGoogle Scholar
  28. 28.
    Hoffman JD (1964) Theoretical aspects of polymer crystallization with chain folds: bulk polymers. SPE Trans 4:315–362.  https://doi.org/10.1002/pen.760040413 Google Scholar
  29. 29.
    Mastumoto T, Ikegami N, Ehara, Kawai T, Maeda H (1970) Structural change of poly(ethylene terephthalate) after annealing. J Chem Soc Jpn Ind Chem Sect 73:2441–2446.  https://doi.org/10.1246/nikkashi1898.73.11_2441 Google Scholar
  30. 30.
    Wang C, Chu MC, Lin TL, Lai SM, Shih HH, Yang JC (2001) Microstructures of a highly short-chain branched polyethylene. Polymer 42:1733–1741.  https://doi.org/10.1016/S0032-3861(00)00566-8 CrossRefGoogle Scholar
  31. 31.
    Kawai T, Ehara K, Sasano H, Kamide K (1968) Thermal analysis of the extended chain crystallization. Makromol Chem 111:271–276.  https://doi.org/10.1002/macp.1968.021110125 CrossRefGoogle Scholar
  32. 32.
    Asbach GI, Kilian HG, Müller FH (1967) Fractions of linear polyethylene as moleculary dispersed eutectic systems. J Polym Sci Part C Polym Symp 18:133–148.  https://doi.org/10.1002/polc.5070180112 CrossRefGoogle Scholar
  33. 33.
    Okui N, Kawai T (1972) Crystallization of ethylene/vinylacetate random copolymers. Makromol Chem 154:161–176.  https://doi.org/10.1002/macp.1972.021540115 CrossRefGoogle Scholar
  34. 34.
    WAXD profiles of BT-2 acquired on the heating process are available in Supporting InformationGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Department of Applied Chemistry, Materials Science Course, College of EngineeringShibaura Institute of TechnologyTokyoJapan
  2. 2.Instrumentation Analysis Center, Tokyo University of Agriculture and TechnologyKoganeiJapan

Personalised recommendations