Advertisement

Polymer Bulletin

, Volume 76, Issue 1, pp 205–213 | Cite as

Polyurethane network using 1-naphthylamine embedded epoxy-based polymer: ferric ion selective fluorescent probe

  • Samaresh GhoshEmail author
  • Rajkumar Manna
  • Swapan Dey
Original Paper
  • 36 Downloads

Abstract

Polyurethane network 1 was prepared through curing of epoxy-based polymer bearing 1-naphthylamine units with tolylene-2,4-diisocyanate as curing agent. With ferric ions, the network was found to exhibit selective ON–OFF-type fluorescence signaling behavior even in the presence of other representative metal ions such as Na+, K+, Ag+, Cu2+, Zn2+, Co2+, Ni2+, Cd2+, Hg2+, Mg2+, Sr2+, Pb2+ and Ca2+ ions.

Keywords

Polyurethane network Epoxy-based polymer Chemosensor Fe3+ ion sensing 

References

  1. 1.
    Sie YW, Wan CF, Wu AT (2017) A multifunctional Schiff base fluorescence sensor for Hg2+, Cu2+ and Co2+ ions. RSC Adv 7:2460–2465CrossRefGoogle Scholar
  2. 2.
    Neupane LN, Oh ET, Park HJ, Lee KH (2016) Selective and sensitive detection of heavy metal ions in 100% aqueous solution and cells with a fluorescence chemosensor based on peptide using aggregation-induced emission. Anal Chem 88:3333–3340CrossRefGoogle Scholar
  3. 3.
    Bai L, Tou LJ, Gao Q, Bose P, Zhao Y (2016) Remarkable colorimetric sensing of heavy metal ions based on thiol-rich nanoframes. Chem Commun 52:13691–13694CrossRefGoogle Scholar
  4. 4.
    Yoon S, Miller EW, He Q, Do PH, Chang CJ (2007) A bright and specific fluorescent sensor for mercury in water, cells, and tissue. Angew Chem Int Ed 46:6658–6661CrossRefGoogle Scholar
  5. 5.
    Que EL, Domaille DW, Chang CJ (2008) Metals in neurobiology: probing their chemistry and biology with molecular imaging. Chem Rev 108:1517–1549CrossRefGoogle Scholar
  6. 6.
    Nolan EM, Lippard SJ (2008) Tools and tactics for the optical detection of mercuric ion. Chem Rev 108:3443–3480CrossRefGoogle Scholar
  7. 7.
    Carter KP, Young AM, Palmer AE (2014) Fluorescent sensors for measuring metal ions in living systems. Chem Rev 114:4564–4601CrossRefGoogle Scholar
  8. 8.
    Li M, Gou H, Ogaidi IA, Wu N (2013) Nanostructured sensors for detection of heavy metals: a review. ACS Sustain Chem Eng 1:713–723CrossRefGoogle Scholar
  9. 9.
    Leitch HA, Fibach E, Rachmilewitz E (2017) Toxicity of iron overload and iron overload reduction in the setting of hematopoietic stem cell transplantation for hematologic malignancies. Crit Rev Oncol Hematol 113:156–170 (references therein) CrossRefGoogle Scholar
  10. 10.
    Huang J, Xu Y, Qian X (2014) Rhodamine-based fluorescent off/on sensor for Fe3+ in aqueous solution and in living cells: 8-aminoquinoline receptor and 2:1 binding. Dalton Trans 43:5983–5989CrossRefGoogle Scholar
  11. 11.
    Huang L, Hou F, Cheng J, Xi P, Chen F, Bai D, Zeng Z (2012) Selective off–on fluorescent chemosensor for detection of Fe3+ ions in aqueous media. Org Biomol Chem 10:9634–9638 (references therein) CrossRefGoogle Scholar
  12. 12.
    Galaris D, Skiada V, Barbouti A (2008) Redox signaling and cancer: the role of “labile” iron. Cancer Lett 266:21–29CrossRefGoogle Scholar
  13. 13.
    Ong WY, Farooqui AA (2005) Iron, neuroinflammation, and Alzheimer’s disease. J Alzheimers Dis 8:183–200CrossRefGoogle Scholar
  14. 14.
    Hirayama T, Nagasawa H (2017) Chemical tools for detecting Fe ions. J Clin Biochem Nutr 60:39–48 (references therein) CrossRefGoogle Scholar
  15. 15.
    Cardona MA, Mallia CJ, Baisch U, Magri DC (2016) Water-soluble amino(ethanesulfonate) and [bis(ethanesulfonate)] anthracenes as fluorescent photoinduced electron transfer (PET) pH indicators and Fe3+ chemosensors. RSC Adv 6:3783–3791CrossRefGoogle Scholar
  16. 16.
    Sahoo SK, Sharma D, Bera RK, Crisponic G, Callan JF (2012) Iron(III) selective molecular and supramolecular fluorescent probes. Chem Soc Rev 41:7195–7227 (references therein) CrossRefGoogle Scholar
  17. 17.
    Huang L, Hou F, Cheng J, Xi P, Chen F, Bai D, Zeng Z (2012) Selective off–on fluorescent chemosensor for detection of Fe3+ ions in aqueous media. Org Biomol Chem 10:9634–9638CrossRefGoogle Scholar
  18. 18.
    Wang R, Yu RF, Liu P, Chen L (2012) A turn-on fluorescent probe based on hydroxylamineoxidation for detecting ferric ion selectively in living cells. Chem Commun 48:5310–5312CrossRefGoogle Scholar
  19. 19.
    Yao JN, Dou W, Liu WS (2009) A new coumarin-based chemosensor for Fe3+ in water. Inorg Chem Commun 12:116–118CrossRefGoogle Scholar
  20. 20.
    Jung HJ, Singh N, Jang DO (2008) Highly Fe3+ selective ratiometric fluorescent probe based on imine-linked benzimidazole. Tetrahedron Lett 49:2960–2964CrossRefGoogle Scholar
  21. 21.
    Mao J, Wang LN, Dou W, Tang XL, Yan Y, Liu WS (2007) Tuning the selectivity of two chemosensors to Fe(III) and Cr(III). Org Lett 9:4567–4570CrossRefGoogle Scholar
  22. 22.
    Xiang Y, Tong A (2006) A new rhodamine-based chemosensor exhibiting selective FeIII-amplified fluorescence. Org Lett 8:1549–1552CrossRefGoogle Scholar
  23. 23.
    Bricks JL, Kovalchuk A, Trieflinger C, Nofz M, Büschel M, Tolmachev AI, Daub J, Rurack K (2005) On the development of sensor molecules that display Fe(III)-amplified fluorescence. J Am Chem Soc 127:13522–13529CrossRefGoogle Scholar
  24. 24.
    Hua J, Wang TG (2005) A highly selective and sensitive fluorescent chemosensor for Fe3+ in physiological aqueous solution. Chem Lett 34:98–99CrossRefGoogle Scholar
  25. 25.
    Anthony SP (2012) Polymorph-dependent solid-state fluorescence and selective metal-ion-sensor properties of 2-(2-Hydroxyphenyl)-4(3H)-quinazolinone. Chem Asian J 7:374–379CrossRefGoogle Scholar
  26. 26.
    Lin WY, Long LL, Yuan L, Cao ZM, Feng JB (2009) A novel ratiometric fluorescent Fe3+ sensor based on a phenanthroimidazole chromophore. Anal Chim Acta 634:262–266CrossRefGoogle Scholar
  27. 27.
    Ji X, Yao Y, Li J, Yan X, Huang F (2013) A supramolecular cross-linked conjugated polymer network for multiple fluorescent sensing. J Am Chem Soc 135:74–77CrossRefGoogle Scholar
  28. 28.
    Liou GS, Lin SM, Yen HJ (2008) Synthesis and photoluminescence properties of novel polyarylates bearing pendent naphthylamine chromophores. Eur Polym J 44:2608–2618CrossRefGoogle Scholar
  29. 29.
    Ghosh S, Dey CK, Manna R (2010) Epoxy-based polymer bearing 1-naphthylamine units: highly selective fluorescent chemosensor for ferric ion. Tetrahedron Lett 51:3177–3180CrossRefGoogle Scholar
  30. 30.
    Ghosh S, Manna R (2011) Epoxy-based oligomer containing dithia-aza-based naphthylazobenzene pendant: a chemosensor for Hg2+ and Cu2+ ions. Supramol Chem 23:558–562CrossRefGoogle Scholar
  31. 31.
    Ghosh S, Dey CK (2014) Epoxy based polymer bearing activated 3-arylazopyridine unit as a chromogenic probe of Hg2 + Ion. J Macromol Sci Pure Appl Chem Part-A 51:217–222CrossRefGoogle Scholar
  32. 32.
    Ghosh S, Manna R (2014) Epoxy-based polymer bearing triphenylamine units: a highly selective fluorescent chemosensor for Hg2+ ions. RSC Adv 4:5798–5802CrossRefGoogle Scholar
  33. 33.
    Lohani CR, Lee KH (2010) The effect of absorbance of Fe3+ on the detection of Fe3+ by fluorescent chemical sensors. Sens Actuators, B 143:649–654CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Department of ChemistryBankura Sammilani CollegeBankuraIndia
  2. 2.Department of Applied ChemistryIndian Institute of Technology (Indian School of Mines)DhanbadIndia

Personalised recommendations