Advertisement

Polymer Bulletin

, Volume 76, Issue 1, pp 495–509 | Cite as

Synthesis and characterization of poly(ester amide amide)s of different alkylene chain lengths

  • Clément Girard
  • Manisha Gupta
  • Abdelaziz Lallam
  • Denis V. Anokhin
  • Polina V. Bovsunovskaya
  • Azaliya F. Akhyamova
  • Alexey P. Melnikov
  • Alexey A. Piryazev
  • Alexander I. Rodygin
  • Andrey A. Rychkov
  • Kseniia N. Grafskaya
  • Ekaterina D. Shabratova
  • Xiaomin ZhuEmail author
  • Martin Möller
  • Dimitri A. IvanovEmail author
Original Paper
  • 122 Downloads

Abstract

In this work, a series of aliphatic biodegradable poly(ester amide amide) polymers was synthesized by melt polycondensation of a tailor-made amide-containing monomer based on 1,4-diaminobutane and ε-caprolactone and different dicarboxylic acid methyl esters with even number of methylene groups. The synthesized polymers were characterized by 1H NMR, FT-IR spectroscopy, GPC, SAXS and WAXS. DSC results show that the melting point is located at about 150 °C for all polymers. X-ray scattering experiments in small and wide angles reveal formation of crystals with extended-chain conformation resulting in strict periodicity of electron density along the main chain. TGA data indicate the high thermal stability of polymers to temperatures above 350 °C, which are much above the melting point. The obtained characteristics of the newly synthesized PEAAs can open new perspectives for melt processing to fabricate films, highly oriented fibers and injection-molded parts with good thermal stability and mechanical performance.

Keywords

Poly(ester amide amide)s Biodegradable polymers Melt polycondensation Small-angle X-ray scattering Wide-angle X-ray scattering 

Notes

Acknowledgements

The authors acknowledge the Ministry of Education and Science of the Russian Federation for financial support (contract No. 14.578.21.0190 (RFMEFI57816X0190)).

References

  1. 1.
    Kaplan DL, Thomas E, Ching C (1993) Biodegradable materials and packaging. Technomic Press, LancasterGoogle Scholar
  2. 2.
    Moore GF, Saunders SM (1997) Advances in biodegradable polymers. Rapra review reports: 9/2. Rapra Technology Limited, ShropshireGoogle Scholar
  3. 3.
    Gonsalves KE, Chen X, Cameron JA (1992) Degradation of nonalternating poly(ester amides). Macromolecules 25:3309–3312CrossRefGoogle Scholar
  4. 4.
    Wiegand S, Steffen M, Steger R, Koch RJ (1999) Isolation and identification of microorganisms able to grow on the polyester amide BAK. J Environ Polym Degrad 7:145–156CrossRefGoogle Scholar
  5. 5.
    Lee S, Park JW, Yoo YT, Im SS (2002) Hydrolytic degradation behaviour and microstructural changes of poly(ester-co-amide)s. Polym Degrad Stabil 78:63–71CrossRefGoogle Scholar
  6. 6.
    Qian ZY, Li S, He Y, Li C, Liu XB (2003) Synthesis and thermal degradation of biodegradable polyesteramide based on ε-caprolactone and 11-aminoundecanoic acid. Polym Degrad Stabil 81:279–286CrossRefGoogle Scholar
  7. 7.
    Qian ZY, Sai L, He Y, Li C, Liu X (2003) Synthesis, characterization and in vitro degradation of biodegradable polyesteramide based on lactic acid. Colloid Polym Sci 281:869–875CrossRefGoogle Scholar
  8. 8.
    Alla A, Rodrigez-Galan A, Martinez-de-llarduya A, Munoz-Guerra S (1997) Degradable poly(ester amide)s based on l-tartaric acid. Polymer 38:4935–4944CrossRefGoogle Scholar
  9. 9.
    Botines E, Rodrigez-Galan A, Puiggali J (2002) Poly(ester amide)s derived from 1,4-butanediol, adipic acid and 1,6-aminohexanoic acid: characterization and degradation studies. Polymer 43:6073–6084CrossRefGoogle Scholar
  10. 10.
    Ferre T, Franco L, Rodrigez-Galan A, Puiggali J (2003) Poly(ester amide)s derived from 1,4-butanediol, adipic acid and 6-aminohexanoic acid. Part II: composition changes and fillers. Polymer 44:6139–6152CrossRefGoogle Scholar
  11. 11.
    Armelin E, Paracuellos N, Rodrigez-Galan A, Puiggali J (2001) Study on the degradability of poly(ester amide)s derived from the α-amino acids glycine, and l-alanine containing a variable amide/ester ratio. Polymer 42:7923–7932CrossRefGoogle Scholar
  12. 12.
    Kawasaki N, Nakayama A, Maeda Y, Hayashi K, Yamamoto N, Aiba S (1998) Synthesis of a new biodegradable copolyesteramide: poly(l-lactic acid-co-ε-caprolactam). Macromol Chem Phys 199:2445–2451Google Scholar
  13. 13.
    Perez-Rodriguez A, Alla A, Fernandez-Santin JM, Munoz-Guerra S (2000) Poly(ester amide)s derived from tartaric and succinic acids: changes in structure and properties upon hydrolytic degradation. J Appl Polym Sci 78:486–494CrossRefGoogle Scholar
  14. 14.
    Andini S, Ferrara L, Maglio G, Palumbo R (1988) Synthesis of block polyesteramides containing biodegradable poly(L, L-lactide) segments. Macromol Chem Rapid Commun 9:119–124CrossRefGoogle Scholar
  15. 15.
    Castaldo L, de Candia F, Maglio G, Palumbo R, Strazza G (1982) Synthesis and physico-mechanical properties of aliphatic polyesteramides. J Appl Polym Sci 27:1809CrossRefGoogle Scholar
  16. 16.
    Castaldo L, Maglio G, Palumbo R (1992) Synthesis and preliminary characterization of polyesteramides containing enzymatically degradable amide bonds. Polym Bull 28:301–307CrossRefGoogle Scholar
  17. 17.
    Pivsa-Art S, Nakayama A, Kawasaki N, Yamamoto N, Aiba S (2002) Biodegradability study of copolyesteramides based on diacid chlorides, diamines, and diols. J Appl Polym Sci 27:774–784CrossRefGoogle Scholar
  18. 18.
    Bera S, Jedlinski Z (1992) Block/segmented polymer: 2. Studies on the thermal and mechanical properties of poly(amide ester)-ester copolymer. Polymer 33:4331–4336CrossRefGoogle Scholar
  19. 19.
    Bera S, Jedlinski Z (1993) Block/segmented polymers. A new method of synthesis of copoly(amide-ester)-ester polymer. J Polym Sci A Polym Chem 31:731–739CrossRefGoogle Scholar
  20. 20.
    Stapert HR, Dijkstra PJ, Feijen J (1998) Synthesis and characterization of aliphatic poly(esteramide)s containing symmetrical bisamide blocks. Macromol Symp 130:91–102CrossRefGoogle Scholar
  21. 21.
    Dijkstra PJ, Stapert HR, Feijen J (2000) Synthesis of aliphatic poly(ester-amide)s containing uniform bisamide-bisester blocks. Macromol Symp 152:127–137CrossRefGoogle Scholar
  22. 22.
    Lips PAM, Broos R, van Heeringen MJM, Dijkstra PJ, Feijen J (2005) Synthesis and characterization of poly(ester amide)s containing crystallizable amide segment. Polymer 46:7823–7833CrossRefGoogle Scholar
  23. 23.
    Garg P, Keul H, Klee D, Möller M (2009) Thermal properties of poly(ester amide)s with isolated, two adjacent and three adjacent amide groups within a polyester chain. Macromol Chem Phys 20:1754–1765CrossRefGoogle Scholar
  24. 24.
    Holden G, Legge NR, Quirk R, Schroeder MJM (1996) Thermoplastic elastomers. Hanser, New YorkGoogle Scholar
  25. 25.
    Odarchenko Y, Doblas D, Rosenthal M, Broos R, Hernandez J, Soloviev M, Anokhin DV, Vidal L, Feijen J, Sijbrandi N, Mes E, Kimenai A, Bar G, Dijkstra P, Ivanov DA (2014) Primary chemical sequence ultimately determines crystal thickness in segmented all-aliphatic co-polymers. Macromolecules 47(22):7890–7899CrossRefGoogle Scholar
  26. 26.
    Odarchenko YI, Sijbrandi NJ, Rosenthal M, Kimenai AJ, Mes EPC, Broos R, Bar G, Dijkstra PJ, Feijen J, Ivanov DA (2013) Structure formation and hydrogen bonding in all-aliphatic segmented copolymers with uniform hard segments. Acta Biomater 9:6143–6149CrossRefGoogle Scholar
  27. 27.
    Sijbrandi NJ, Kimenai AJ, Mes EPC, Broos R, Bar G, Rosenthal M, Odarchenko YI, Ivanov DA, Dijkstra PJ, Feijen J (2012) Synthesis, morphology and properties of segmented poly(ether ester amide)s comprising uniform glycine or β-alanine extended bisoxalamide hard segments. Polymer 53:4033–4044CrossRefGoogle Scholar
  28. 28.
    Sijbrandi NJ, Kimenai AJ, Mes EPC, Broos R, Bar G, Rosenthal M, Odarchenko Y, Ivanov DA, Dijkstra PJ, Feijen J (2012) Synthesis, morphology and properties of segmented poly(ether amide)s with uniform oxalamide based hard segments. Macromolecules 45:3948–3961CrossRefGoogle Scholar
  29. 29.
    Okada M (2002) Chemical syntheses of biodegradable polymers. Prog Polym Sci 27:87–133CrossRefGoogle Scholar
  30. 30.
    Stapert HR, Bouwen AM, Dijkstra PJ, Feijen J (1999) Environmentally degradable aliphatic poly(ester-amide)s based on short, symmetrical and uniform bisamide-diol blocks, 1. Synthesis and interchange reactions. Macromol Chem Phys 200:1921–1929CrossRefGoogle Scholar
  31. 31.
    Garg P, Keul H, Klee D, Möller M (2009) Concept and synthesis of poly(ester amide)s with one isolated, two or three consecutive amide bonds randomly distributed along the polyester backbone. Des Monomers Polym 12:405–424CrossRefGoogle Scholar
  32. 32.
    Kohan MI (1995) Nylon plastics handbook. Hanser Publishers, MunichGoogle Scholar
  33. 33.
    Melnikov AP, Rosenthal M, Rodygin AI, Doblas D, Anokhin DV, Burghammer M, Ivanov DA (2016) Re-exploring the double-melting behavior of semirigid-chain polymers with an in situ combination of synchrotron nano-focus X-ray scattering and nanocalorimetry. Eur Polym J 81:598–606CrossRefGoogle Scholar
  34. 34.
    Ivanov DA, Jonas AM, Legras R (2000) The crystallization of poly(aryl-ether-ether-ketone) (PEEK). Reorganization processes during gradual reheating of cold-crystallized samples. Polymer 41:3719–3727CrossRefGoogle Scholar
  35. 35.
    Paredes N, Casas MT, Puiggali J, Lotz B (1999) Structural data on the packing of poly(ester amide)s derived from glycine, hexanediol, and odd-numbered dicarboxylic acids. J Polym Sci B Polym Phys 37:2521–2533CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  • Clément Girard
    • 1
  • Manisha Gupta
    • 2
  • Abdelaziz Lallam
    • 1
  • Denis V. Anokhin
    • 3
    • 4
  • Polina V. Bovsunovskaya
    • 3
    • 5
  • Azaliya F. Akhyamova
    • 3
    • 5
  • Alexey P. Melnikov
    • 3
    • 5
  • Alexey A. Piryazev
    • 3
    • 5
  • Alexander I. Rodygin
    • 3
    • 5
  • Andrey A. Rychkov
    • 3
    • 5
  • Kseniia N. Grafskaya
    • 3
  • Ekaterina D. Shabratova
    • 3
  • Xiaomin Zhu
    • 2
    Email author
  • Martin Möller
    • 2
  • Dimitri A. Ivanov
    • 3
    • 6
    Email author
  1. 1.Laboratoire de Physique et Mécanique TextileUniversité de Haute AlsaceMulhouseFrance
  2. 2.DWI – Leibniz-Institute for Interactive Materials e.V. and Institute for Technical and Macromolecular ChemistryRWTH Aachen UniversityAachenGermany
  3. 3.Moscow Institute of Physics and Technology (State University)DolgoprudnyRussia
  4. 4.Institute for Problems of Chemical Physics RASChernogolovkaRussia
  5. 5.Faculty of Fundamental Physical and Chemical EngineeringLomonosov Moscow State UniversityMoscowRussia
  6. 6.Institut de Sciences des Matériaux de Mulhouse (CNRS UMR 7361)MulhouseFrance

Personalised recommendations