Advertisement

Polymer Bulletin

, Volume 76, Issue 2, pp 575–594 | Cite as

The properties of chemical cross-linked poly(lactic acid) by bis(tert-butyl dioxy isopropyl) benzene

  • Xue Ai
  • Dongmei WangEmail author
  • Xin Li
  • Hongwei Pan
  • Junjun Kong
  • Huili Yang
  • Huiliang Zhang
  • Lisong Dong
Original Paper
  • 71 Downloads

Abstract

To improve the thermal stability and mechanical properties of poly(lactic acid) (PLA), bis(tert-butyl dioxy isopropyl) benzene (BIBP) (0–0.4 wt%) as cross-linking agent was introduced into the PLA. The PLA/BIBPx samples were characterized by Fourier transform infrared spectrometry. The gel fraction and degree of swelling of PLA/BIBPx were studied. The thermal and degradation properties of samples were also investigated by means of differential scanning calorimetry and thermogravimetric analysis; the thermal stability of the samples was improved by the addition of BIBP. The complex viscosity (η*), storage modulus (G′), and loss modulus (G′′) were increased with the increase in BIBP content from rheological measurement. The mechanical properties of the PLA/BIBPx blends and PLA/BIBPx films were tested by tensile tests, and the blends’ tensile strength was enhanced due to the cross-linking effect of BIBP. The 0.2 wt% BIBP gave the PLA/BIBPx blends the best mechanical properties, while the 0.1% BIBP made PLA/BIBPx films an optimal mechanical property. The morphology of the tear-fractured surface of the films was also studied, and PLA/BIBP0.1 film revealed more clearly layered structure than PLA.

Keywords

PLA Bis(tert-butyl dioxy isopropyl) benzene Cross-linking Thermal properties Mechanical properties 

Notes

Acknowledgements

This work was supported by the fund of Science and Technology Bureau of Jilin Province of China (No. 20160307001GX), Science and Technology Bureau of Changchun City of China (No. 16SS03), Science and Technology Bureau of Jilin City of China (No. 20163206), and Chinese Science Academy (Changchun Branch) (No. 2017SYHZ0016).

References

  1. 1.
    Bordes P, Pollet E, Avérous L (2009) Nano-biocomposites: biodegradable polyester/nanoclay systems. Prog Polym Sci 34:125–155.  https://doi.org/10.1016/j.progpolymsci.2008.10.002 CrossRefGoogle Scholar
  2. 2.
    Wang Z, Lai XL, Zhang M, Yang W, Yang MB (2017) Synthesis of an efficient processing modifier silica-g-poly(lactic acid)/poly(propylene carbonate) and its behavior for poly(lactic acid)/poly(propylene carbonate) blends. Ind Eng Chem Res 56(49):14704–14715.  https://doi.org/10.1021/acs.iecr.7b03444 CrossRefGoogle Scholar
  3. 3.
    Cazacu G, Darie-Nita RN, Chirila O, Totolin M, Asandulesa M, Ciolacu DE, Ludwiczak J, Vasile C (2017) Environmentally friendly polylactic acid/modified lignosulfonate biocomposites. J Polym Environ 25(3):884–902.  https://doi.org/10.1007/s10924-016-0868-2 CrossRefGoogle Scholar
  4. 4.
    Shi XT, Jing ZX, Zhang GC, Xu Y, Yao Y (2017) Fully bio-based poly(ɛ-capolactone)/poly(lactide) alternating multiblock. J Appl Polym Sci 134:45575.  https://doi.org/10.1002/app.45575 CrossRefGoogle Scholar
  5. 5.
    Vink ETH, Rabago KR, Glassner DA, Gruber PR (2003) Applications of life cycle assessment to NatureWorks (TM) polylactide (PLA) production. Polym Degrad Stabil 80:403–419.  https://doi.org/10.1016/S0141-3910(02)00372-5 CrossRefGoogle Scholar
  6. 6.
    Lim LT, Auras R, Rubino M (2008) Processing technologies for poly(lactic acid). Prog Polym Sci 33:820–852.  https://doi.org/10.1016/j.progpolymsci.2008.05.004 CrossRefGoogle Scholar
  7. 7.
    Auras R, Harte B, Selke S (2004) An overview of polylactides as packaging materials. Macromol Biosci 4:835–864.  https://doi.org/10.1002/mabi.200400043 CrossRefGoogle Scholar
  8. 8.
    Moshiul Alam AKM, Beg MDH, Reddy Prasad DM, Khan MR, Mina MF (2012) Structures and performances of simultaneous ultrasound and alkali treated oil palm empty fruit bunch fiber reinforced poly(lactic acid) composites. Compos A 43:1921–1929.  https://doi.org/10.1016/j.compositesa.2012.06.012 CrossRefGoogle Scholar
  9. 9.
    Na YH, He Y, Shuai X, Kikkawa Y, Doi Y, Inoue Y (2002) Compatibilization effect of poly(epsilon-caprolactone)-b-poly(ethylene glycol) block copolymers and phase morphology analysis in immiscible poly(lactide)/poly(epsilon-caprolactone) blends. Biomacromol 3:1179–1186.  https://doi.org/10.1021/bm020050r CrossRefGoogle Scholar
  10. 10.
    Furukawa T, Sato H, Murakami R, Zhang JM, Duan YX, Noda I, Ochiai S, Ozaki Y (2005) Structure, dispersibility, and crystallinity of poly(hydroxybutyrate)/poly(L-lactic acid) blends studied by FT-IR microspectroscopy and differential scanning calorimetry. Macromolecules 38:6445–6454.  https://doi.org/10.1021/ma0504668 CrossRefGoogle Scholar
  11. 11.
    Yokohara T, Yamaguchi M (2008) Structure and properties for biomass-based polyester blends of PLA and PBS. Eur Polym J 44:677–685.  https://doi.org/10.1016/j.eurpolymj.2008.01.008 CrossRefGoogle Scholar
  12. 12.
    Chuayjuljit S, Wongwaiwattanakul C, Chaiwutthinan P, Prasassarakich P (2017) Biodegradable poly(lactic acid)/poly(butylene succinate)/wood flour composites: physical and morphological properties. Polym Composite 38(12):2841–2851.  https://doi.org/10.1002/pc.23886 CrossRefGoogle Scholar
  13. 13.
    Jiang L, Wolcott MP, Zhang JW (2006) Study of biodegradable polylactide/poly-(butylene adipate-co-terephthalate) blends. Biomacromol 7:199–207.  https://doi.org/10.1021/bm050581q CrossRefGoogle Scholar
  14. 14.
    Yang SL, Wu ZH, Yang W, Yang MB (2008) Thermal and mechanical properties of chemical crosslinked polylactide (PLA). Polymer Test 27:957–963.  https://doi.org/10.1016/j.polymertesting.2008.08.009 CrossRefGoogle Scholar
  15. 15.
    Zhao F, Huang HX, Zhang SD (2015) Largely toughening biodegradable poly(lactic acid)/thermoplastic polyurethane blends by adding MDI. J Appl Polym Sci 132:1–9.  https://doi.org/10.1002/APP.42511 CrossRefGoogle Scholar
  16. 16.
    Beg MDH, Moshiul Alam AKM, Yunus RM, Mina MF (2015) Improvement of interaction between pre-dispersed multiwalled carbon nanotubes and unsaturated polyester resin. J Nanopart Res 17(53):1–13.  https://doi.org/10.1007/s11051-014-2846-8 Google Scholar
  17. 17.
    Semba T, Kitagawa K, Ishiaku US, Hamada H (2006) The effect of crosslinking on the mechanical properties of polylactic acid/polycaprolactone blends. J Appl Polym Sci 101:1816–1825.  https://doi.org/10.1002/app.23589 CrossRefGoogle Scholar
  18. 18.
    Arruda LC, Magaton M, Bretas RES, Uek MM (2015) Influence of chain extender on mechanical, thermal and morphological properties of blown films of PLA/PBAT blends. Polymer Test 43:27–37.  https://doi.org/10.1016/j.polymertesting.2015.02.005 CrossRefGoogle Scholar
  19. 19.
    Su ZZ, Li QY, Liu YJ, Hu GH, Wu CF (2009) Compatibility and phase structure of binary blends of poly(lactic acid) and glycidyl methacrylate grafted poly(ethylene octane). Eur Polym J 45:2428–2433.  https://doi.org/10.1016/j.eurpolymj.2009.04.028 CrossRefGoogle Scholar
  20. 20.
    Phetwarotai W, Tanrattanakul V, Phusunti N (2016) Mechanical characteristics and thermal behaviours of polylactide blend films: influence of nucleating agent and poly(butylenes adipate-co-terephthalate). Plast Rubber Comper 45(8):333–345.  https://doi.org/10.1080/14658011.2016.1197556 CrossRefGoogle Scholar
  21. 21.
    Marsilla KIK, Verbeek CJR (2015) Modification of poly(lactic acid) using itaconic anhydride by reactive extrusion. Eur Polym J 67:213–223.  https://doi.org/10.1016/j.eurpolymj.2015.03.054 CrossRefGoogle Scholar
  22. 22.
    Cocca M, Di Lorenzo ML, Malinconico M, Frezza V (2011) Influence of crystal polymorphism on mechanical and barrier properties of poly(L-lactic acid). Eur Polym J 47:1073–1080.  https://doi.org/10.1016/j.eurpolymj.2011.02.009 CrossRefGoogle Scholar
  23. 23.
    Gil-Castell O, Badia JD, Kittikorn T, Stromberg E, Ek M, Karlsson S, Ribes-Greus A (2016) Impact of hydrothermal ageing on the thermal stability, morphology and viscoelastic performance of PLA/sisal biocomposites. Polym Degrad Stabil 132:87–96.  https://doi.org/10.1016/j.polymdegradstab.2016.03.038 CrossRefGoogle Scholar
  24. 24.
    Chena BK, Shiha CC, Chenb AF (2012) Ductile PLA nanocomposites with improved thermal stability. Compos Part A Appl Sci Manuf 43:2289–2295.  https://doi.org/10.1016/j.compositesa.2012.08.007 CrossRefGoogle Scholar
  25. 25.
    Supthanyakul R, Kaabbuathong N, Chirachanchai S (2016) Random poly(butylene succinate-co-lactic acid) as a multi-functional additive for miscibility, toughness, and clarity of PLA/PBS blends. Polymer 105:1–9.  https://doi.org/10.1016/j.polymer.2016.10.006 CrossRefGoogle Scholar
  26. 26.
    Hao YP, Ge HH, Han LJ, Liang HY, Zhang HL, Dong LS (2013) Thermal, mechanical, and rheological properties of poly(propylene carbonate) cross-linked with polyaryl polymethylene isocyanate. Polym Bull 70:1991–2003.  https://doi.org/10.1007/s00289-013-0912-5 CrossRefGoogle Scholar
  27. 27.
    Dong WF, Ma P, Wang SF, Chen MQ, Cai XX, Zhang Y (2013) Effect of partial crosslinking on morphology and properties of the poly(beta-hydroxybutyrate)/poly(D, L-lactic acid) blends. Polym Degrad Stabil 98:1549–1555.  https://doi.org/10.1016/j.polymdegradstab.2013.06.033 CrossRefGoogle Scholar
  28. 28.
    Ju DD, Han LJ, Li F, Chen S, Dong LS (2014) Poly(epsilon-caprolactone) composites reinforced by biodegradablepoly(3-hydroxybutyrate-co-3-hydroxyvalerate) fiber. Int J Biol Macromol 67:343–350.  https://doi.org/10.1016/j.ijbiomac.2014.03.048 CrossRefGoogle Scholar
  29. 29.
    Nofar M, Heuzey MC, Carreau PJ, Kamal MR (2016) Effects of nanoclay and its localization on the morphology stabilization of PLA/PBAT blends under shear flow. Polymer 98:353–364.  https://doi.org/10.1016/j.polymer.2016.06.044 CrossRefGoogle Scholar
  30. 30.
    Al-Itry R, Lamnawar Khalid, Maazouz Abderrahim (2012) Improvement of thermal stability, rheological and mechanical properties of PLA, PBAT and their blends by reactive extrusion with functionalized epoxy. Polym Degrad Stabil 97:1898–1914.  https://doi.org/10.1016/j.polymdegradstab.2012.06.028 CrossRefGoogle Scholar
  31. 31.
    Ray SS, Maiti P, Okamoto M, Yamada K, Ueda K (2002) New polylactide/layered silicate nanocomposites. 1. Preparation, characterization, and properties. Macromol 35:3104–3110.  https://doi.org/10.1021/ma011613e CrossRefGoogle Scholar
  32. 32.
    Zhao Y, Lang XZ, Pan HW, Wang YJ, Yang HL, Zhang HL, Zhang HX, Dong LS (2015) Effect of mixing poly(lactic acid) with glycidyl methacrylate grafted poly(ethylene octene) on optical and mechanical properties of the blown films. Polym Eng Sci 55:2801–2813.  https://doi.org/10.1002/pen.24171 CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  • Xue Ai
    • 1
    • 2
    • 3
  • Dongmei Wang
    • 1
    Email author
  • Xin Li
    • 2
    • 3
    • 4
  • Hongwei Pan
    • 2
    • 3
  • Junjun Kong
    • 2
    • 3
  • Huili Yang
    • 2
  • Huiliang Zhang
    • 2
  • Lisong Dong
    • 2
  1. 1.College of Chemical and Environmental EngineeringShandong University of Science and TechnologyQingdaoChina
  2. 2.Key Laboratory of Polymer EcomaterialsChinese Academy of Sciences, Changchun Institute of Applied ChemistryChangchunChina
  3. 3.University of Science and Technology of ChinaHefeiChina
  4. 4.Changchun University of TechnologyChangchunChina

Personalised recommendations