Advertisement

Polymer Bulletin

, Volume 75, Issue 11, pp 5333–5354 | Cite as

Potential of Borneo Acacia wood in fully biodegradable bio-composites’ commercial production and application

  • Muhammad Khusairy Bin BakriEmail author
  • Elammaran JayamaniEmail author
  • Sinin Hamdan
  • Md. Rezaur Rahman
  • Akshay Kakar
Review
  • 230 Downloads

Abstract

This review paper explores the potential of commercial production and application of Acacia wood—polylactic acid (PLA), and Acacia wood—polyhydroxyalkanoates (PHA) bio-composites. The factors affecting the mechanical and physical properties of these materials were identified and deliberated. It was found that Acacia wood has the prospective to be efficiently produced and used in Borneo. It can be used in a variety of applications, including but not limited to: fire breaker, timber resource, furniture production, soil re-conditioning, and as reinforced materials. Since, today, there is heightened awareness regarding sustainability, manufacturers are driven towards producing completely biodegradable products that are created using PLA and PHA bio-composites. This review provides an overview on the performance of the existing composites and bio-composites, and their implementation and utilization, while focusing on the Borneo region.

Notes

Acknowledgements

The authors are grateful for the support of Faculty of Engineering, Computing and Science, Swinburne University of Technology Sarawak Campus (SUTS), and Faculty of Engineering, Universiti Malaysia Sarawak (UNIMAS).

References

  1. 1.
    PERKASA (2009) Seminar on viability assessment of indigenous tree species and propagation techniques for planted forest development in Sarawak. Sarawak Timber Ind Dev Corp Newslett 5(6):6–8Google Scholar
  2. 2.
    Yamashita N, Ohta S, Hardjono A (2008) Soil changes induced by Acacia mangium plantation establishment: comparison with secondary forest and imperata cylindrica grassland soils in South Sumatra, Indonesia. Forest Ecol Manag 254:362–370CrossRefGoogle Scholar
  3. 3.
    Inagaki M, Titin J (2009) Evaluation of site environments for agroforestry production. In: Gotoh T, Yokota Y (eds) Development of agroforestry technology for the rehabilitation of tropical forest. Japan International Research Center for Agricultural Sciences, Tsukuba, pp 26–31Google Scholar
  4. 4.
    Yang L, Liu N, Ren H, Wang J (2009) Facilitation by two exotic Acacia: Acacia auriculiformis and Acacia mangium as nurse plants in South China. Forest Ecol Manag 257:1786–1793CrossRefGoogle Scholar
  5. 5.
    Hashim MN, Maziah Z, Sheikh AA (1990) The incidence of heartrot in Acacia mangium Willd. plantations: a preliminary observation. In: Appanah S, Ng FSP, Roslan I (eds) Malayan forestry and forest products research. Forestry Research Institute Malaysia, Kepong, pp 54–59Google Scholar
  6. 6.
    Weinland G, Zuhaidi A (1990) Management of Acacia mangium stands: tending issues. In: Appanah S, Ng FSP, Roslan I (eds) Malayan forestry and forest products research. Forestry Research Institute Malaysia, Kepong, pp 41–53Google Scholar
  7. 7.
    Garkhail SK, Meurs E, Van de Beld T, Peijs T (1999) Thermoplastic composites based on biopolymers and natural fibres. Int Conf Compos Mater 1:1–10Google Scholar
  8. 8.
    Morton WE, Hearle JWS (2008) Physical properties of textile fibres. Woodhead Publishing, CambridgeCrossRefGoogle Scholar
  9. 9.
    Maldas D (1996) Cellulose-filled composites. In: Salamone JC (ed) Polymeric materials encyclopedia. CRC Press, Florida, p 1079Google Scholar
  10. 10.
    Mieck K-P, Lützkendorf R, Reussmann T (1996) Needle-Pubched hybrid nonwovens of flax and PP fibers-textile semi-products for manufacturing of fiber composites. Polym Compos 17:873–878CrossRefGoogle Scholar
  11. 11.
    Hornsby PR, Hinrichsen E, Tarverdi K (1997) Preparation and properties of polypropylene composites reinforced with wheat and flax straw fibres: part II analysis of composite microstructure and mechanical properties. J Mater Sci 32:1009–1015CrossRefGoogle Scholar
  12. 12.
    Peijs T, Garkhail S, Heijenrath R, van Den Oerver M, Bos H (1998) Thermoplastic composites based on flax fibres and polypropylene: influence of fibre length and fibre volume fraction on mechanical properties. Macromol Symp 127:193–203CrossRefGoogle Scholar
  13. 13.
    Peijs T, van Melick HGH, Garkhail SK, Pott GT, Baillie CA (1998) Natural-fibre-mat reinforced thermoplastics based on upgraded flax fibres for improved moisture resistance. In: Crivillie Visconti I (ed) 8th European conference on composite materials (ECCM-8), science, technology and applications. Woodhead Publishing, Cambridge, pp 119–126Google Scholar
  14. 14.
    Jusoh I, Abu Zaharin F, Adam NS (2014) Wood quality of Acacia hybrid and second-generation Acacia mangium. BioResources 9:150–160Google Scholar
  15. 15.
    Zobel BJ, Buijtenen JP (1989) Wood variation—its causes and control. Springer, HeidelbergCrossRefGoogle Scholar
  16. 16.
    Bowyer JL, Shmulsky R, Haygreen JG (2006) Forest products and wood science: an introduction. Springer, HeidelbergGoogle Scholar
  17. 17.
    Zobel BJ, Jet JB (1995) Genetics of wood production. Springer, Heidelberg, pp 1–289Google Scholar
  18. 18.
    Mohd Hamami S, Semsolbahri B (2003) Wood structures and wood properties relationship in planted Acacias: Malaysian examples. Int Symp Sustain Util 1:24–34Google Scholar
  19. 19.
    Rokeya UK, Akter Hossain M, Rowson Ali M, Paul SP (2010) Physical and mechanical properties of (Acacia auriculiformis × A. mangium) hybrid Acacia. J Bangladesh Acad Sci 34:181–187Google Scholar
  20. 20.
    Sattar MA, Kabir MF, Bhattacharjee DK (1994) Physical and mechanical properties of Bambusa arundinacea, Bambusa longispiculata, Bambusa vulgaris and Dendrocalamus giganteus [in Bangladesh]. Bangladesh Agric Res Counc 15:6–18Google Scholar
  21. 21.
    Laurila R (1995) Wood properties and utilization potential of eight fast-growing tropical plantation tree species. J Trop For Prod 1:209–221Google Scholar
  22. 22.
    Yakub M, Omar Ali M, Bhattacharjee DK (1979) Strength properties of Chittagong teak (Tectona grandis) representing different age groups. Government of the People’s Republic of Bangladesh, Forest Research InstituteGoogle Scholar
  23. 23.
    Pashin AJ, De Zeeuw C (1980) Textbook of wood technology: structure, identification, properties and uses of the commercial woods of the United States and Canada. McGraw-Hill, New YorkGoogle Scholar
  24. 24.
    Mohd Shukari M, Abdul Rasip AG, Mohd Lokmal N (2002) Comparative strength properties of six-year-old Acaia mangium and 4-year-old Acacia hybrid. J Trop For Prod 8:115–117Google Scholar
  25. 25.
    Garlotta D (2001) A literature review of poly(lactic acid). J Polym Environ 9:63–84CrossRefGoogle Scholar
  26. 26.
    Hartmann MH (1998) High molecular weight polylactic acid polymers. In: Kaplan DL (ed) Biopolymers from renewable resources. Springer, Berlin, pp 367–411CrossRefGoogle Scholar
  27. 27.
    Kharas GB, Sanchez-Riera F, Severson DK (1994) Polymers of lactic acid. In: Mobley DP (ed) Plastics from microbes—microbial synthesis of polymers and polymer precursors. Hanser Publishers, Munich, pp 93–258Google Scholar
  28. 28.
    Kricheldorf HR, Kreiser-Saunders I, Jurgens C, Wolter D (1996) Polylactides—synthesis, characterization and medical application. Macromol Symp 103:85–102Google Scholar
  29. 29.
    Gilding DK, Reed AM (1979) Biodegradable polymers for use in surgery—polyglycolic/poly(actic acid) homo- and copolymers: 1. Polymer 20:1459–1464CrossRefGoogle Scholar
  30. 30.
    Kricheldorf HR, Kreiser-Saunders I, Boettcher C (1995) Polylactones: 31. Sn(II)octoate-initiated polymerization of l-lactide: a mechanistic study. Polymer 36:1253–1259CrossRefGoogle Scholar
  31. 31.
    Vasanthakumari R, Pennings AJ (1983) Crystallization kinetics of poly(l-lactic acid). Polymer 24:175–178CrossRefGoogle Scholar
  32. 32.
    Loomis GL, Murdoch JR (1990) U.S. Patent 4 317, 515Google Scholar
  33. 33.
    Loomis GL, Murdoch JR (1988) U.S. Patent 4 719, 246Google Scholar
  34. 34.
    Spinu M (1994) U.S. Patent 5 317, 64Google Scholar
  35. 35.
    Ikada Y, Jamshidi H, Tsuji H, Hyon SH (1987) Stereocomplex formation between enantiomeric poly(lactides). Macromolecules 20:904–906CrossRefGoogle Scholar
  36. 36.
    Yui N, Dijkstra PJ, Feijen J (1990) Stereo block copolymers of l- and d-lactides. Macromol Chem Phys 191:481–488CrossRefGoogle Scholar
  37. 37.
    Tsuji H, Ikada Y (1993) Stereocomplex formation between enantiomeric poly(lactic acids). 9. Stereocomplexation from the melt. Macromolecules 26:6918–6926CrossRefGoogle Scholar
  38. 38.
    Stevels WM, Ankone MJK, Dijkstra PJ, Feijén J (1995) Stereocomplex formation in ABA triblock copolymers of poly(lactide) (A) and poly(ethylene glycol) (B). Macromol Chem Phys 196:3687–3694CrossRefGoogle Scholar
  39. 39.
    Anderson AJ, Dawes EA (1990) Occurrence, metabolism, metabolic role, and industrial uses of bacterial polyhydroxyalkanoates. Microbiol Rev 54:450–472PubMedPubMedCentralGoogle Scholar
  40. 40.
    Shah AA, Hasan F, Hameed A, Ahmed A (2008) Biological degradation of plastics: a comprehensive review. Biotechnol Adv 26:246–265CrossRefPubMedGoogle Scholar
  41. 41.
    Khanna S, Srivastava AK (2005) Recent advances in microbial polyhdroxyalkanoates. Process Biochem 40:607–619CrossRefGoogle Scholar
  42. 42.
    Lu J, Tappel RC, Nomura CT (2009) Mini-review: biosynthesis of poly(hydroxyalkanaotes). Polym Rev 49:226–248CrossRefGoogle Scholar
  43. 43.
    Zinn M, Hany R (2005) Tailored material properties of polyhydroxyalkanoates through biosynthesis and chemical modification. Adv Eng Mater 7:408–411CrossRefGoogle Scholar
  44. 44.
    Escapa IF, Morales V, Martino VP, Pollet E, Avérous L, García JL, Prieto MA (2011) Disruption of beta-oxidation pathway in Pseudomonas putida KT2442 to produce new functionalized PHAs with thioester groups. Appl Microbiol Biotechnol 89:1583–1598CrossRefPubMedGoogle Scholar
  45. 45.
    Rai R, Keshavarz T, Roether JA, Boccaccini AR, Roy I (2011) Medium chain length polyhydroxyalkanoates, promising new biomedical materials for the future. Mater Sci Eng R Rep 72:29–47CrossRefGoogle Scholar
  46. 46.
    De Roo G, Kellerhals MB, Ren Q, Witholt B, Kessler B (2002) Production of chiral R-3-hydroxyalkanoic acids and R-3-hydroxyalkanoic acid methylesters via hydrolytic degradation of polyhydroxyalkanoate synthesized by pseudomonads. Biotechnol Bioeng 77:717–722CrossRefPubMedGoogle Scholar
  47. 47.
    Philip S, Keshavarz T, Roy I (2007) Polyhydroxyalkanoates: biodegradable polymers with a range of applications. J Chem Technol Biotechnol 82:233–247CrossRefGoogle Scholar
  48. 48.
    Olivera ER, Arcos M, Naharro G, Luengo JM (2010) Unusual PHA biosynthesis. In: Chen G-Q (ed) Plastics from bacteria: natural functions and applications. Springer, Berlin, pp 133–186CrossRefGoogle Scholar
  49. 49.
    Chen G-Q (2010) Plastics completely synthesized by bacteria: polyhydroxyalkanoates. In: Chen G-Q (ed) Plastics from bacteria: natural functions and applications. Springer, Berlin, pp 17–37CrossRefGoogle Scholar
  50. 50.
    Chen G-Q (2010) Introduction of bacterial plastics PHA, PLA, PBS, PE, PTT, and PPP. In: Chen G-Q (ed) Plastics from bacteria: natural functions and applications. Springer, Berlin, pp 1–16CrossRefGoogle Scholar
  51. 51.
    Wu C-S, Liao H-T (2014) The mechanical properties, biocompatibility and biodegradability of chestnut shell fibre and polyhydroxyalkanoate composites. Polym Degrad Stabil 99:274–282CrossRefGoogle Scholar
  52. 52.
    Pickering KL, Aruan Efendy MG, Le TM (2016) A review of recent developments in natural fibre composites and their mechanical performance. Compos Part A Appl Sci Manuf 83:98–112CrossRefGoogle Scholar
  53. 53.
    Shah DU, Porter D, Vollrath F (2014) Can silk become an effective reinforcing fibre? A property comparison with flax and glass reinforced composites. Compos Sci Technol 101:173–183CrossRefGoogle Scholar
  54. 54.
    Bos HL, Van den Oever MJA, Peters O (2002) Tensile and compressive properties of flax fibres for natural fibre reinforced composites. J Mater Sci 37:1683–1692CrossRefGoogle Scholar
  55. 55.
    Carr DJ, Cruthers NM, Laing RM, Niven BE (2005) Fibers from three cultivars of New Zealand flax (Phormium tenax). Text Res J 75:93–98CrossRefGoogle Scholar
  56. 56.
    Holbery J, Houston D (2006) Natural-fiber-reinforced polymer composites in automotive applications. JOM 58:80–86CrossRefGoogle Scholar
  57. 57.
    Summerscales J, Dissanayake NPJ, Virk AS, Hall W (2010) A review of bast fibres and their composites. Part 1-fibres as reinforcemetns. Compos Part A Appl Sci Manuf 41:1329–1335CrossRefGoogle Scholar
  58. 58.
    Dos Santos PA, Giriolli JC, Amarasekera J, Moraes G. (2008) Natural fibers plastic composites for automotive applications In: Troy MI (ed) 8th Annual automotive composites conference and exhibition (ACCE 2008), SPE Automotive and Composites Division, pp. 492–500Google Scholar
  59. 59.
    Faruk O, Bledzki AK, Fink HP, Sain M (2014) Progress report on natural fiber reinforced composites. Macromol Mater Eng 299:9–26CrossRefGoogle Scholar
  60. 60.
    Madsen B, Thygesen A, Lilholt H (2009) Plant fibre composites—porosity and stiffness. Compos Sci Technol 69:1057–1069CrossRefGoogle Scholar
  61. 61.
    Madsen B, Lilholt H (2003) Physical and mechanical properties of unidirectional plant fibre composites—an evaluation of the influence of porosity. Compos Sci Technol 63:1265–1272CrossRefGoogle Scholar
  62. 62.
    Angelov I, Wiedmer S, Evstatiev M, Friedrich K, Mennig G (2007) Pultrusion of a flax polypropylene yarn. Compos Part A Appl Sci Manuf 38:1431–1438CrossRefGoogle Scholar
  63. 63.
    Rodriguez E, Petrucci R, Puglia D, Kenny JM, Vazquez A (2005) Characterization of composites based on natural and glass fibers obtained by vacuum infusion. J Compos Mater 39:265–282CrossRefGoogle Scholar
  64. 64.
    Ho M-P, Wang H, Lee J-H, Ho C-K, Lau K-T, Leng J, Hui D (2012) Critical factors on manufacturing processes of natural fibre composites. Compos Part B Eng 43:3549–3562CrossRefGoogle Scholar
  65. 65.
    Herrmann AS, Nickel J, Riedel U (1998) Construction materials based upon biologically renewable resources—from components to finished parts. Polym Degrad Stab 59:251–261CrossRefGoogle Scholar
  66. 66.
    Jiang L, Hinrichsen G (1999) Flax and cotton fiber reinforced biodegradable polyester amide composites, 2. Characterization of biodgradation. Macromol Mater Eng 268:13–17Google Scholar
  67. 67.
    Mohanty AK, Khan MA, Sahoo S, Hinrichsen G (2000) Effect of chemical modification on the performance of biodegradable jute yarn-Biopol® composites. J Mater Sci 35:2589–2595CrossRefGoogle Scholar
  68. 68.
    Van de Velde K, Kiekens P (2003) Effect of material and process parameters on the mechanical properties of unidirectional and multidirectional flax/polypropylene composites. Compos Struct 62:443–448CrossRefGoogle Scholar
  69. 69.
    Amor IB, Rekik H, Kaddami H, Raihane M, Arous M, Kallel A (2010) Effect of palm tree fiber orientation on electrical properties of palm tree fiber-reinforced polyester composites. J Compos Mater 44:1553–1568CrossRefGoogle Scholar
  70. 70.
    Herrera-Franco PJ, Valadez-Gonzalez A (2005) A study of the mechanical properties of short natural-fiber reinforced composites. Compos Part B Eng 36:597–608CrossRefGoogle Scholar
  71. 71.
    Norman DA, Robertson RE (2003) The effect of fiber orientation on the toughening of short fiber-reinforced polymers. J Appl Polym Sci 90:2740–2751CrossRefGoogle Scholar
  72. 72.
    Joseph PV, Joseph K, Thomas S (1999) Effect of processing variables on the mechanical properties of sisal-fiber-reinforced polypropylene composites. Compos Sci Technol 59:1625–1640CrossRefGoogle Scholar
  73. 73.
    Carpenter JEP, Miao M, Brorens P (2007) Deformation behaviour of composites reinforced with four different linen flax yarn structures. Adv Mater Res 29–30:263–266CrossRefGoogle Scholar
  74. 74.
    Khalfallah M, Abbes B, Abbes F, Guo YQ, Marcel V, Duval A, Vanfleteren F, Rousseau F (2014) Innovative flax tapes reinforced Acrodur biocomposites: a new alternative for automotive applications. Mater Des 64:116–126CrossRefGoogle Scholar
  75. 75.
    Sanadi AR, Caulfield DF, Jacobson RE (1997) Agro-fiber/thermoplastic composites. In: Rowell RM, Rowell J (eds) Paper and composites from agro-based resources. CRC Press, Boca Raton, pp 377–401Google Scholar
  76. 76.
    Heidi P, Bo M, Roberts J, Kalle N (2011) The influence of biocomposite processing and composition on natural fiber length, dispersion and orientation. J Mater Sci Eng A 1:190–198Google Scholar
  77. 77.
    Beckermann GW, Pickering KL (2008) Engineering and evaluation of hemp fibre reinforced polypropylene composites: fibre treatment and matrix modification. Compos Part A Appl Sci Manuf 39:979–988CrossRefGoogle Scholar
  78. 78.
    Chen P, Lu C, Yu Q, Gao Y, Li J, Li X (2006) Influence of fiber wettability on the interfacial adhesion of continuous fiber-reinforced PPESK composite. J Appl Polym Sci 102:2544–2551CrossRefGoogle Scholar
  79. 79.
    Wu XF, Dzenis YA (2006) Droplet on a fiber: geometrical shape and contact angle. Acta Mech 185:215–225CrossRefGoogle Scholar
  80. 80.
    Bénard Q, Fois M, Grisel M (2007) Roughness and fibre reinforcement effect onto wettability of composite surfaces. Appl Surf Sci 253:4753–4758CrossRefGoogle Scholar
  81. 81.
    Sinha E, Panigrahi S (2009) Effect of plasma treatment on structure, wettability of jute fiber and flexural strength of its composite. J Compos Mater 43:1791–1802CrossRefGoogle Scholar
  82. 82.
    Liu ZT, Sun C, Liu ZW, Lu J (2008) Adjustable wettability of methyl methacrylate modified ramie fiber. J Appl Polym Sci 109:2888–2894CrossRefGoogle Scholar
  83. 83.
    Pickering K (2008) Properties and performance of natural-fibre composites. Woodhead Publishing, CambridgeCrossRefGoogle Scholar
  84. 84.
    Cao Y, Sakamoto S, Goda K (2007) Effects of heat and alkali treatments on mechanical properties of kenaf fibers. 16th Int Conf Compos Mater 1:1–4Google Scholar
  85. 85.
    Rong MZ, Zhang MQ, Liu Y, Yang GC, Zeng HM (2001) The effect of fiber treatment on the mechanical properties of unidirectional sisal-reinforced epoxy composites. Compos Sci Technol 61:1437–1447CrossRefGoogle Scholar
  86. 86.
    Huber T, Biedermann U, Muessig J (2010) Enhancing the fibre matrix adhesion of natural fibre reinforced polypropylene by electron radiation analyzed with the single fibre fragmentation test. Compos Interfaces 17:371–381CrossRefGoogle Scholar
  87. 87.
    Beg MDH, Pickering KL (2008) Mechanical performance of Kraft fibre reinforced polypropylene composites: influence of fibre length, fibre beating and hygrothermal ageing. Compos Part A Appl Sci Manuf 39:1748–1755CrossRefGoogle Scholar
  88. 88.
    Shah DU (2014) Natural fibre composites: comprehensive Ashby-type materials selection charts. Mater Des 62:21–31CrossRefGoogle Scholar
  89. 89.
    Zhang L, Miao M (2010) Commingled natural fibre/polypropylene wrap spun yarns for structured thermoplastic composites. Compos Sci Technol 70:130–135CrossRefGoogle Scholar
  90. 90.
    Baghaei B, Skrifvars M, Berglin L (2013) Manufacture and characterisation of thermoplastic composites made from PLA/hemp co-wrapped hybrid yarn prepregs. Compos Part A Appl Sci Manuf 50:93–101CrossRefGoogle Scholar
  91. 91.
    Van de Weyenberg I, Ivens J, De Coster A, Kino B, Baetens E, Verpoest I (2003) Influence of processing and chemical treatment of flax fibres on their composites. Compos Sci Technol 63:1241–1246CrossRefGoogle Scholar
  92. 92.
    Hughes M, Carpenter J, Hill C (2007) Deformation and fracture behaviour of flax fibre reinforced thermosetting polymer matrix composites. J Mater Sci 42:2499–2511CrossRefGoogle Scholar
  93. 93.
    Goutianos S, Peijs T, Nystrom B, Skrifvars M (2006) Development of flax fibre based textile reinforcements for composite applications. Appl Compos Mater 13:199–215CrossRefGoogle Scholar
  94. 94.
    Le Guen MJ, Newman RH (2007) Pulped Phormium tenax leaf fibres as reinforcement for epoxy composites. Compos Part A Appl Sci Manuf 38:2109–2115CrossRefGoogle Scholar
  95. 95.
    Oksman K (2001) High quality flax fibre composites manufactured by the resin transfer moulding process. J Reinf Plast Compos 20:621–627CrossRefGoogle Scholar
  96. 96.
    Oksman K, Wallstrom L, Berglund LA, Toledo RD (2002) Morphology and mechanical properties of unidirectional sisal—epoxy composites. J Appl Polym Sci 84:2358–2365CrossRefGoogle Scholar
  97. 97.
    Phillips S, Baets J, Lessard L, Hubert P, Verpoest I (2013) Characterization of flax/epoxy prepregs before and after cure. J Reinf Plast Compos 32:777–785CrossRefGoogle Scholar
  98. 98.
    Le MT, Pickering KL (2015) The potential of harakeke fibre as reinforcement in polymer matrix composites including modelling of long harakeke fibre composite strength. Compos Part A Appl Sci Manuf 76:44–53CrossRefGoogle Scholar
  99. 99.
    Newman RH, Le Guen MJ, Battley MA, Carpenter JEP (2010) Failure mechanisms in composites reinforced with unidirectional Phormium leaf fibre. Compos Part A Appl Sci Manuf 41:353–359CrossRefGoogle Scholar
  100. 100.
    Islam MS, Pickering KL, Foreman NJ (2011) Influence of alkali fiber treatment and fiber processing on the mechanical properties of hemp/epoxy composites. J Appl Polym Sci 119:3696–3707CrossRefGoogle Scholar
  101. 101.
    Balakrishna A, Rao DN, Rakesh AS (2013) Characterization and modeling of process parameters on tensile strength of short and randomly oriented Borassus Flabellifer (Asian Palmyra) fiber reinforced composite. Compos Part B Eng 55:479–485CrossRefGoogle Scholar
  102. 102.
    Brahim SB, Cheikh RB (2007) Influence of fibre orientation and volume fraction on the tensile properties of unidirectional Alfa-polyester composite. Compos Sci Technol 67:140–147CrossRefGoogle Scholar
  103. 103.
    Devi LU, Bhagawan SS, Thomas S (1997) Mechanical properties of pineapple leaf fiber-reinforced polyester composites. J Appl Polym Sci 64:1739–1748CrossRefGoogle Scholar
  104. 104.
    Snijder MHB, Bos HL (2000) Reinforcement of polypropylene by annual plant fibers: optimization of the coupling agent efficiency. Compos Interfaces 7:69–79CrossRefGoogle Scholar
  105. 105.
    Bledzki AK, Mamun AA, Lucka M, Gutowsk VS (2008) The effects of acetylation on properties of flax fibre and its polypropylene composites. Express Polym Lett 2:413–422CrossRefGoogle Scholar
  106. 106.
    Oksman K (2000) Mechanical properties of natural fibre mat reinforced thermoplastic. Appl Compos Mater 7:403–414CrossRefGoogle Scholar
  107. 107.
    Sain M, Suhara P, Law S, Bouilloux A (2005) Interface modification and mechanical properties of natural fiber-polyolefin composite products. J Reinf Plast Compos 24:121–130CrossRefGoogle Scholar
  108. 108.
    Li HJ, Sain MM (2003) High stiffness natural fiber-reinforced hybrid polypropylene composites. Polym Plast Technol Eng 42:853–862CrossRefGoogle Scholar
  109. 109.
    Rana AK, Mandal A, Mitra BC, Jacobson R, Rowell R, Banerjee AN (1998) Short jute fiber-reinforced polypropylene composites: effect of compatibilizer. J Appl Polym Sci 69:329–338CrossRefGoogle Scholar
  110. 110.
    Zampaloni M, Pourboghrat F, Yankovich S, Rodgers B, Moore J, Drzal L, Mohanty AK, Misra M (2007) Kenaf natural fiber reinforced polypropylene composites: a discussion on manufacturing problems and solutions. Compos Part A Appl Sci Manuf 38:1569–1580CrossRefGoogle Scholar
  111. 111.
    Fink HP, Ganster J (2006) Novel thermoplastic composites from commodity polymers and man-made cellulose fibers. Macromol Symp 244:107–118CrossRefGoogle Scholar
  112. 112.
    Feldmann M, Bledzki AK (2014) Bio-based polyamides reinforced with cellulosic fibres—processing and properties. Compos Sci Technol 100:113–120CrossRefGoogle Scholar
  113. 113.
    El-Shekeil YA, Sapuan SM, Abdan K, Zainudin ES (2011) Effect of alkali treatment and pMDI isocyanate additive on tensile properties of kenaf fiber reinforced thermoplastic polyurethane composite. Int Conf Adv Mater Eng 15:20–24Google Scholar
  114. 114.
    Bodros E, Pillin I, Montrelay N, Baley C (2007) Could biopolymers reinforced by randomly scattered flax fibre be used in structural applications? Compos Sci Technol 67:462–470CrossRefGoogle Scholar
  115. 115.
    Islam MS, Pickering KL, Foreman NJ (2010) Influence of alkali treatment on the interfacial and physico-mechanical properties of industrial hemp fibre reinforced polylactic acid composites. Compos Part A Appl Sci Manuf 41:596–603CrossRefGoogle Scholar
  116. 116.
    Baghaei B, Skrifvars M, Salehi M, Bashir T, Rissanen M, Nousiainen P (2014) Novel aligned hemp fibre reinforcement for structural biocomposites: porosity, water absorption, mechanical performances and viscoelastic behavior. Compos Part A Appl Sci Manuf 61:1–12CrossRefGoogle Scholar
  117. 117.
    Hu R, Lim JK (2007) Fabrication and mechanical properties of completely biodegradable hemp fiber reinforced polylactic acid composites. J Compos Mater 41:1655–1669CrossRefGoogle Scholar
  118. 118.
    Arao Y, Fujiura T, Itani S, Tanaka T (2015) Strength improvement in injection-molded jute-fiber-reinforced polylactide green-composites. Compos Part B Eng 68:200–206CrossRefGoogle Scholar
  119. 119.
    Ochi S (2008) Mechanical properties of kenaf fibers and kenaf/PLA composites. Mech Mater 40:446–452CrossRefGoogle Scholar
  120. 120.
    Graupner N, Mussig J (2011) A comparison of the mechanical characteristics of kenaf and lyocell fibre reinforced poly(lactic acid) (PLA) and poly(3-hydroxybutyrate) (PHB) composites. Compos Part A Appl Sci Manuf 42:2010–2019CrossRefGoogle Scholar
  121. 121.
    Felline F, Pappada S, Gennaro R, Passaro A (2013) Resin transfer moulding of composite panels with bio-based resins. SAMPE J 49:20–24Google Scholar
  122. 122.
    Chaw CS, Mitlohner R (2011) Acacia mangium willd: ecology and silviculture in Vietnam. Center for International Forestry Research (CIFOR), Bogor.  https://doi.org/10.17528/cifor/003694
  123. 123.
    Hayward B (2009) The Acacia tree: a sustainable resource for Africa. Rowes the Printers, PenzanceGoogle Scholar
  124. 124.
    Sreekala MS, Thomas S, Neelakantan NR (1996) Utilization of short oil palm empty fruit bunch fiber (OPEFB) as a reinforcement in phenol-formaldehyde resins: studies on mechanical properties. J Polym Eng 16(4):265–294CrossRefGoogle Scholar
  125. 125.
    Abdul Khalil HPS, Ismail H (2000) Effect of acetylation and coupling agent treatments upon biological degradation of plant fibre reinforced polyester composites. Polym Test 20:65–75CrossRefGoogle Scholar
  126. 126.
    Abdul Khalil HPS, Rozman HD, Ismail H, Rosfaizal Ahmad MN (2002) Polypropylene (PP)-Acacia mangium composites: the effect of acetylation on mechanical and water absorption properties. Polym Plast Technol Eng 41:453–468CrossRefGoogle Scholar
  127. 127.
    Hill CAS, Khalil HPS, Hale MD (1998) A study of the potential of acetylation to improve the properties of plant fibres. Ind Crops Prod 8:53–63CrossRefGoogle Scholar
  128. 128.
    Mosadeghzad Z, Ahmad I, Daik R, Ramli A, Jalaludin Z (2009) Preparation and properties of Acacia sawdust/UPR composite based on recycled PET. Malaysian Polym J 4:30–41Google Scholar
  129. 129.
    Shebani AN, Van Reenan AJ, Meincken M (2009) The effect of wood species on the mechanical and thermal properties of wood—LLDPE composites. J Compos Mater 43:1305–1318CrossRefGoogle Scholar
  130. 130.
    Bledzki AK, Gassan J, Theis S (1998) Wood-filled thermoplastic composites. Mech Compos Mater 34:563–568CrossRefGoogle Scholar
  131. 131.
    Bledzki AK, Gassan J (1999) Composites reinforced with cellulose based fibres. Prog Polym Sci 24:221–274CrossRefGoogle Scholar
  132. 132.
    Mylsamy K, Rajendran I (2011) The mechanical properties, deformation and thermos mechanical properties of alkali treated and untreated Agave continuous fibre reinforced epoxy composites. Mater Des 32:3076–3084CrossRefGoogle Scholar
  133. 133.
    Venkateshwaran N, Elaya Perumal A, Arunsundaranayagam D (2013) Fiber surface treatment and its effect on mechanical and visco-elastic behaviour of banana/epoxy composite. Mater Des 47:151–159CrossRefGoogle Scholar
  134. 134.
    El-Shekeil YA, Sapuan SM, Khalina A, Zainudin ES, Al-Shuja’a OM (2012) Effect of Alkali treatment on mechanical and thermal properties of kenaf fiber-reinforced thermoplastic polyurethane composite. J Therm Anal Calorim 109:1435–1443CrossRefGoogle Scholar
  135. 135.
    Rusli R, Samsi HW, Kadir R, Ujang S, Jalaludin Z, Misran S (2013) Properties of small diameter Acacia hybrid logs for biocomposites production. Borneo Sci 33:9–15Google Scholar
  136. 136.
    Saini G, Bhardwaj R, Choudhary V, Narula AK (2010) Poly(vinyl chloride)–Acacia bark flour composite: effect of particle size and filler content on mechanical, thermal, and morphological characteristics. J Appl Polym Sci 117:1309–1318Google Scholar
  137. 137.
    Mansur R, Natov M, Vassileva S (2002) Wood-polyvinylchloride composites as wood substitutes. J Univ Chem Technol Metallurgy 37:77Google Scholar
  138. 138.
    Inoue T, Suzuli T (1995) Selective crosslinking reaction in polymer blends. III. The effects of the crosslinking of dispersed EPDM particles on the impact behavior of PP/EPDM blends. J Appl Polym Sci 56:1113–1125CrossRefGoogle Scholar
  139. 139.
    Taflick T, Maich EG, Ferreira LD, Bica CID, Rodrigues SRS, Nachtigall MB (2015) Acacia bark residues as filler in polypropylene composites. Polimeros 25:289–295Google Scholar
  140. 140.
    Ashori A (2008) Effects of nanoparticles on the mechanical properties of rice straw/polypropylene composites. Biores Technol 99:4661–4667CrossRefGoogle Scholar
  141. 141.
    Charão LS (2005) Polinização em. Acacia Mearsii De Wild. Revista de Ciências Agro-Ambientais 3:92–109Google Scholar
  142. 142.
    Aji IS, Zainudin ES, Abdan K, Sapuan SM, Khairul MD (2012) Mechanical properties and water absorption behavior of hybridized kenaf/pineapple leaf fibre-reinforced high-density polyethylene composite. J Compos Mater 47:979–990CrossRefGoogle Scholar
  143. 143.
    Idicula M, Joseph K, Thomas S (2010) Mechanical performance of short banana/sisal hybrid fiber reinforced polyester composites. J Reinf Plast Compos 29:12–29CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Faculty of Engineering, Computing and ScienceSwinburne University of Technology of Sarawak CampusKuchingMalaysia
  2. 2.Faculty of EngineeringUniversiti Malaysia SarawakKota SamarahanMalaysia

Personalised recommendations