Thermal stability, mechanical properties, impact strength, and uniaxial extensional rheology of reactive blends of PS and SBS polymers

  • Mohammad Mahbubul HassanEmail author
  • Tatsuhiro Takahashi
  • Kiyohito Koyama
Original Paper


Polystyrene (PS) has low impact strength and also shows poor strain hardening. In this work, poly(styrene–butadiene–styrene) triblock copolymer (SBS) was solution- and melt-blended with PS in the presence of a free-radical polymerization initiator, dicumyl peroxide (DCP), to enhance PS’s thermal stability, mechanical properties, impact resistance, and strain hardening. The solution-blended PS/SBS containing 0.1% DCP annealed at 180 °C showed strong strain hardening, but the melt-blended PS/SBS annealed at the same temperature and time showed poor strain hardening. The change in the blending temperature, DCP concentration, and PS-to-SBS ratio had minimal effect on the strain hardening of melt-blended PS/SBS. The tensile strength increased with an increase in the concentration of DCP up to 0.1%, and beyond that level, the tensile strength started decreasing. The impact resistance considerably improved with an increase in the SBS loading in the PS matrix, and the enhancement was more than double of the impact resistance shown by the neat PS.


Polymer blends and alloys Rheology Mechanical properties Thermal properties Impact strength 



We would like to thank the Ministry of Education of the Japanese Government for sponsoring Dr. Hassan through a ‘visiting professorship.’ I would like to thank Ken Miyata for helping in the measurement of uniaxial extensional rheology.


  1. 1.
    Hassan MM, Koyama K (2015) Thermal, physicomechanical, and morphological properties of HDPE graft-copolymerized with polystyrene. Polym Adv Technol 26:1285–1293CrossRefGoogle Scholar
  2. 2.
    Sukhareva LA, Legonkova OA, Yakovlev VS (2008) Polymers for packaging and containers in food industry. CRC Press, Boca Raton, pp 455–490CrossRefGoogle Scholar
  3. 3.
    Piorkowska E, Argon AS, Cohen RE (1993) Izod impact strength of polystyrene-based blends containing low molecular weight polybutadiene. Polymer 34:4435–4444CrossRefGoogle Scholar
  4. 4.
    Zhou C, Wu S, Yang B, Gao Y-X, Wu G-F, Zhang H-X (2015) Toughening polystyrene by core-shell rubber particles: analysis of the internal structure and properties. Polym Polym Compos 23:317–324Google Scholar
  5. 5.
    Guo TY, Tang GL, Hao GJ, Song MD, Zhang BH (2003) Toughening modification of PS with n-BA/MMA/styrene core–shell structured copolymer from emulsifier-free emulsion polymerization. J Appl Polym Sci 90:1290–1297CrossRefGoogle Scholar
  6. 6.
    Wu DY, Svazas Y (2006) Micro- and nano-sized calcium carbonate toughened polystyrene. J Nanosci Nanotechnol 6:3919–3922CrossRefGoogle Scholar
  7. 7.
    Yang H, Zhang X, Qu C, Li B, Zhang L, Zhang Q, Fu Q (2007) Largely improved toughness of PP/EPDM blends by adding nano-SiO2 particles. Polymer 48:860–869CrossRefGoogle Scholar
  8. 8.
    Han J-J, Huang H-X (2011) Preparation and characterization of biodegradable polylactide/thermoplastic polyurethane elastomer blends. J Appl Polym Sci 120:3217–3223CrossRefGoogle Scholar
  9. 9.
    Feng F, Zhao X-W, Ye L (2011) Structure and properties of ultradrawn polylactide/thermoplastic polyurethane elastomer blends. J Macromol Sci B 50:1500–1507CrossRefGoogle Scholar
  10. 10.
    Sugimoto M, Masubuchi M, Takimoto J, Koyama K (2001) Melt rheology of polypropylene containing small amounts of high-molecular-weight chain. 2. Uniaxial and biaxial extensional flow. Macromolecules 34:6056–6063CrossRefGoogle Scholar
  11. 11.
    Fowler MW, Baker WE (1988) Rubber toughening of polystyrene through reactive blending. Polym Eng Sci 28:1427–1433CrossRefGoogle Scholar
  12. 12.
    Schneider M, Pith T, Lambla M (1997) Toughening of polystyrene by natural rubber-based composite particles: Part I Impact reinforcement by PMMA and PS grafted core-shell particles. J Mater Sci 32:6331–6342CrossRefGoogle Scholar
  13. 13.
    Michler GH (1990) Formation of crazes in polymer blends. Macromol Chem: Macromol Sympos 38:195–204CrossRefGoogle Scholar
  14. 14.
    Doufas AK, Rice L, Thurston W (2011) Shear and extensional rheology of polypropylene melts: experimental and modeling studies. J Rheol 55:95–126CrossRefGoogle Scholar
  15. 15.
    Wang J, James DF, Park CB (2010) Planar extensional flow resistance of a foaming plastic. J Rheol 54:95–116CrossRefGoogle Scholar
  16. 16.
    Takahashi M, Isaki T, Takigawa T, Masuda T (1993) Measurement of biaxial and uniaxial extensional flow behavior of polymer melts at constant strain rates. J Rheol 37:827–846CrossRefGoogle Scholar
  17. 17.
    Lentzakis H, Vlassopoulos V, Read DJ, Lee H, Chang T, Driva P, Hadjichristidis N (2013) Uniaxial extensional rheology of well-characterized comb polymers. J Rheol 57:605–625CrossRefGoogle Scholar
  18. 18.
    Ahirwal D, Filipe S, Neuhaus I, Busch M, Schlatter G, Wilhelm M (2014) Large amplitude oscillatory shear and uniaxial extensional rheology of blends from linear and long-chain branched polyethylene and polypropylene. J Rheol 58:635–658CrossRefGoogle Scholar
  19. 19.
    Huang Q, Magnus M, Alvarez NJ, Koopmans R, Hassager O (2016) A new look at extensional rheology of low-density polyethylene. Rheol Acta 55:343–350CrossRefGoogle Scholar
  20. 20.
    Sugimoto M, Suzuki Y, Hyun K, Ahn KH, Ushioda T, Nishioka A, Taniguchi T, Koyama K (2006) Melt rheology of long-chain-branched polypropylenes. Rheol Acta 46:33–46CrossRefGoogle Scholar
  21. 21.
    Stange J, Munstedt H (2006) Rheological properties and foaming behavior of polypropylenes with different molecular structures. J Rheol 50:907–927CrossRefGoogle Scholar
  22. 22.
    Minegishi A, Nishioka A, Takahashi T, Masubuchi Y, Takimoto J, Koyama K (2001) Uniaxial elongational viscosity of PS/a small amount of UHMW-PS blends. Rheol Acta 40:329–338CrossRefGoogle Scholar
  23. 23.
    Kurose T, Takahashi T, Sugimoto M, Koyama K (2005) Uniaxial elongational viscosity of PC/a small amount of PTFE blend. Nihon Reoroji Gakkaishi 33:173–182CrossRefGoogle Scholar
  24. 24.
    Liu J, Lou L, Yu W, Liao R, Li R, Zhou C (2010) Long chain branching polylactide: structures and properties. Polymer 51:5186–5197CrossRefGoogle Scholar
  25. 25.
    Li S, He G, Liao X, Park CB, Yang Q, Li G (2017) Introduction of a long-chain branching structure by ultraviolet-induced reactive extrusion to improve cell morphology and processing properties of polylactide foam. RSC Adv 7:6266–6277CrossRefGoogle Scholar
  26. 26.
    Sugimoto M, Tanaka T, Masubuchi Y, Takimoto J, Koyama K (1999) Effect of chain structure on the melt rheology of modified polypropylene. J Appl Polym Sci 73:1493–1500CrossRefGoogle Scholar
  27. 27.
    Kurzbeck S, Oster F, Munstedt H (1999) Rheological properties of two polypropylenes with different molecular structure. J Rheol 43:359–374CrossRefGoogle Scholar
  28. 28.
    Auhl D, Stange J, Münstedt H, Krause B, Voigt D, Lederer A, Lappan U, Lunkwitz K (2004) Long-chain branched polypropylenes by electron beam irradiation and their rheological properties. Macromolecules 37:9465–9472CrossRefGoogle Scholar
  29. 29.
    Li S, Xiao M, Wei D, Xiao H, Hu F, Zheng A (2009) The melt grafting preparation and rheological characterization of long chain branching polypropylene. Polymer 50:6121–6128CrossRefGoogle Scholar
  30. 30.
    Takahashi T, Takimoto J-I, Koyama K (1999) Elongational viscosity for miscible and immiscible polymer blends. II. Blends with a small amount of UHMW polymer. J Appl Polym Sci 72:961–969CrossRefGoogle Scholar
  31. 31.
    Wagner MH, Bastian H, Hachmann P, Meissner J, Kurzbeck S, Munstedt H, Langouche F (2000) The strain-hardening behavior of linear and long-chain-branched polyolefin melts in extensional flows. Rheol Acta 39:97–109CrossRefGoogle Scholar
  32. 32.
    Yang L, Huang J, Lu X, Jia S, Zhang H, Jin G, Qu J (2015) Influences of dicumyl peroxide on morphology and mechanical properties of polypropylene/poly(styrene-b-butadiene-b-styrene) blends via vane-extruder. J Appl Polym Sci 132:41543Google Scholar
  33. 33.
    Ghosh P, Ray P (1991) Studies on polybutadiene rubber (PBR)-polystyrene (PS) interpenetrating polymer network. J Mater Sci 26:6004–6012Google Scholar
  34. 34.
    Jehani Y, Ghetmiri M, Vaseghi MR (2015) Polypropylene and chain extension of poly(ethylene terephthalate) on the thermal behavior, rheology and morphology of their blends. RSC Adv 5:21620–21628CrossRefGoogle Scholar
  35. 35.
    Su F-H, Huang H-X (2010) Rheology and melt strength of long chain branching polypropylene prepared by reactive extrusion with various peroxides. Polym Eng Sci 50:342–351CrossRefGoogle Scholar
  36. 36.
    Münstedt H (1980) Dependence of elongational behavior of polystyrene melts on molecular weight and molecular weight distribution. J Rheol 24:847CrossRefGoogle Scholar
  37. 37.
    Krupa I, Luyt AS (2001) Mechanical properties of uncrosslinked and crosslinked linear low-density polyethylene/wax blends. J Appl Polym Sci 81:973–980CrossRefGoogle Scholar
  38. 38.
    Ha CS, Kim SC (1989) Tensile properties and morphology of the dynamically cured EPDM and PP/HDPE ternary blends. J Appl Polym Sci 37:317–334CrossRefGoogle Scholar
  39. 39.
    Lungulescu EM, Zaharescu T (2016) Stabilization of polymers against photodegradation. In: Dan R, Visakh PM (eds) Photochemical behavior of multicomponent polymeric-based materials. Springer, Basel, p 187Google Scholar
  40. 40.
    Munteanu SB, Brebu M, Vasile C (2005) Thermal and thermo-oxidative behavior of butadiene-styrene copolymers with different architectures. Polym Degrad Stab 89:501–512CrossRefGoogle Scholar
  41. 41.
    Zhou J, Du X-H, Yue W (2017) Study on the blend of SBS and polystyrene, and properties of their mixture. Adv Eng Res 112:27–30Google Scholar
  42. 42.
    Thomann Y, Thomann R, Hasenhindl A, Mülhaupt R (2009) Gradient interfaces in SBS and SBS/PS blends and their influence on morphology development and material properties. Macromolecules 42:5684–5699CrossRefGoogle Scholar
  43. 43.
    Chung Y-C, Lee BH, Jo SH, Chun BC (2015) Preparation and characterization of polyurethane copolymer grafted with polystyrene side chains. Polym Plast Technol Eng 54:1066–1076CrossRefGoogle Scholar
  44. 44.
    Andreopoulos AG, Tarantili PA, Anastassakis P (2007) Compatibilizers for low-density polyethylene/polypropylene blends, Novel determination of the crystallinity of syndiotactic polystyrene using FTIR spectrum. J Macromol Sci A 36:1113–1122CrossRefGoogle Scholar
  45. 45.
    Masson J-F, Pelletier L, Collins P (2001) Rapid FTIR method for quantification of styrene-butadiene type copolymers in bitumen. J Appl Polym Sci 79:1034–1041CrossRefGoogle Scholar
  46. 46.
    Wang S-M, Chang J-R, Tsiang RC-C (1996) Infrared studies of thermal oxidative degradation of polystyrene-block polybutadiene-block polystyrene thermoplastic elastomers. Polym Degrad Stab 52:51–57CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Venture Business LaboratoryYamagata UniversityYonezawa CityJapan
  2. 2.Department of Polymer Science and EngineeringYamagata UniversityYonezawa CityJapan
  3. 3.Bioproduct and Fibre Technology TeamAgResearch Ltd.ChristchurchNew Zealand

Personalised recommendations