Polymer Bulletin

, Volume 75, Issue 9, pp 4191–4205 | Cite as

Thermal degradation of poly(caprolactone), poly(lactic acid), and poly(hydroxybutyrate) studied by TGA/FTIR and other analytical techniques

  • W. A. Herrera-Kao
  • M. I. Loría-Bastarrachea
  • Y. Pérez-Padilla
  • J. V. Cauich-Rodríguez
  • H. Vázquez-Torres
  • José M. Cervantes-UcEmail author
Original Paper


Thermal degradation of three biodegradable polyesters: poly(caprolactone), poly(lactic acid), and poly(hydroxybutyrate), was studied by thermogravimetry coupled to Fourier Transform Infrared Spectroscopy TGA/FTIR before and after they were partially degraded. TGA curves and Gram–Schmidt plots showed only one decomposition stage for both poly(caprolactone), PCL, and poly(lactic acid), PLA. In contrast, poly(hydroxybutyrate), PHB, exhibited two degradation stages by TGA, but only one region of evolved gases was appreciated in the Gram–Schmidt plot. It was established that hexenoic acid, ε-caprolactone, and small fragments of polymeric chains are the main degradation products of PCL, which were simultaneously released during thermal decomposition of this polymer. Meanwhile, carboxylic acid, aldehydes, and lactide monomer and/or oligomers were evolved from degradation of PLA. Finally, carboxylic acids and ester moiety were detected in the course of degradation of PHB; thus, random chain scission reaction took place during thermal decomposition of this polymer. Results from the spectroscopic characterization (FTIR and 1H NMR) of partially degraded samples supported the degradation mechanisms suggested by TGA/FTIR studies.


Thermal degradation TGA/FTIR Poly(caprolactone) Poly(lactic acid) Poly(hydroxybutyrate) 



This work was supported by Consejo Nacional de Ciencia y Tecnología (CONACYT), Grant 169398.


  1. 1.
    Persenaire O, Alexandre M, Degee P, Dubois P (2001) Mechanisms and kinetics of thermal degradation of poly(ε-caprolactone). Biomacromolecules 2:288–294CrossRefPubMedGoogle Scholar
  2. 2.
    Su T-T, Jiang H, Gong H (2008) Thermal stability and thermal degradation kinetics of poly(ε-caprolactone). Polym Plast Technol Eng 47:398–403CrossRefGoogle Scholar
  3. 3.
    Aoyagi Y, Yamashita K, Doi Y (2002) Thermal degradation of poly[(R)-3-hydroxybutyrate], poly[ε-caprolactone] and poly[(S)-lactide]. Polym Degrad Stab 76:53–59CrossRefGoogle Scholar
  4. 4.
    Vogel C, Siesler HW (2008) Thermal degradation of poly(ε-caprolactone), poly(L-lactic acid) and their blends with poly(3-hydroxybutyrate) studied by TGA/FTIR spectroscopy. Macromol Symp 265:183–194CrossRefGoogle Scholar
  5. 5.
    Kopinke F-D, Mackenzie K (1997) Mechanistic aspects of the thermal degradation of poly(lactic acid) and poly(β-hydroxybutyric acid). J Anal Appl Pyrolysis 40–41:43–53CrossRefGoogle Scholar
  6. 6.
    Li S-D, He J-D, Yu PH, Cheung MK (2003) Thermal degradation of poly(3-hydroxybutyrate) and poly(3-hydroxybutyrate-co-3-hydroxyvalerate) as studied by TG, TG-FTIR, and Py-GC/MS. J Appl Polym Sci 89:1530–1536CrossRefGoogle Scholar
  7. 7.
    Vogel C, Morita S, Sato H, Noda I, Ozaki Y, Siesler HW (2007) Thermal degradation of poly(3-hydroxybutyrate) and poly(3-hydroxybutyrate-co-3-hydroxyhexanoate) in nitrogen and oxygen studied by thermogravimetric-fourier transform infrared spectroscopy. Appl Spectrosc 61:755–763CrossRefPubMedGoogle Scholar
  8. 8.
    Abe H (2006) Thermal degradation of environmentally degradable poly(hydroxyalkanoic acid)s. Macromol Biosci 6:469–486CrossRefPubMedGoogle Scholar
  9. 9.
    Grassie N, Murray EJ (1984) The thermal degradation of poly(-(d)-β-hydroxybutyric acid): part 1—identification and quantitative analysis of products. Polym Degrad Stab 6:47–61CrossRefGoogle Scholar
  10. 10.
    Nikolic L, Ristic I, Adnadjevic B, Nikolic V, Jovanovic J, Stankovic M (2010) Novel microwave-assisted Synthesis of Poly(D, L-lactide): the influence of monomer/initiator molar ratio on the product properties. Sensors 10:5063–5073CrossRefPubMedGoogle Scholar
  11. 11.
    Messersmith PB, Giannelis EP (1993) Polymer-layered silicate nanocomposites: in situ intercalative Polymerization of ε-caprolactone in layered silicates. Chem Mater 5:1064–1066CrossRefGoogle Scholar
  12. 12.
    Zoltowska K, Sobczak M, Oledzka E (1025) Novel zinc-catalytic systems for ring-opening polymerization of ε-caprolactone. Molecules 20:2816–2827CrossRefGoogle Scholar
  13. 13.
    Kister G, Cassanas G, Vert M (1998) Effect of morphology, conformation and configuration on the IR and Raman spectra of various poly(lactic acid)s. Polymer 39:267–273CrossRefGoogle Scholar
  14. 14.
    Marques DS, Santos JMC, Ferreira P, Correia TR, Correia IJ, Gil MH, Baptista CMSG (2016) Photocurable bioadhesive based on lactic acid. Mater Sci Eng C 58:601–609CrossRefGoogle Scholar
  15. 15.
    Jarmelo S, Marques DAS, Simoes PN, Carvalho RA, Batista RA, Araujo-Andrade C, Gil MH, Fausto R (2012) Experimental (IR/Raman and 1H/13C NMRE) and theoretical (DFT) studies of the preferential conformations adopted by L-lactic acid oligomers and poly(L-lactic acid) homopolymer. J Phys Chem B 116:9–21CrossRefPubMedGoogle Scholar
  16. 16.
    Parra DF, Forster PL, Lyszczek R, Ostasz A, Lugao AB, Rzaczynska Z (2013) Thermal behavior of the highly luminescent poly(3-hydroxybutyrate: eu(tta)3(H2O)2 red-emissive complex. J Therm Anal Calorim 114:1049–1056CrossRefGoogle Scholar
  17. 17.
    Michalak M, Kwiecien M, Kawalec M, Kurcok P (2016) Oxidative degradation of poly(3-hydroxybutyrate). A new method of synthesis for the malic acid copolymers. RSC Advances 6:12809–12818CrossRefGoogle Scholar
  18. 18.
    Naheed N, Jamil N, Hasnain S, Abbas G (2012) Biosynthesis of polyhydroxybutyrate in Enterobacter sp. SEL2 and Enterobacteriaceae bacterium sp PFW1 using sugar cane molasses as media. African J Biotech 11:3321–3332CrossRefGoogle Scholar
  19. 19.
    Morikawa H, Marchessault RH (1981) Pyrolysis of bacterial polyalkanoates. Can J Chem 59:2306–2313CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  • W. A. Herrera-Kao
    • 1
  • M. I. Loría-Bastarrachea
    • 1
  • Y. Pérez-Padilla
    • 2
  • J. V. Cauich-Rodríguez
    • 1
  • H. Vázquez-Torres
    • 3
  • José M. Cervantes-Uc
    • 1
    Email author
  1. 1.Centro de Investigación Científica de Yucatán, A.CUnidad de MaterialesMéridaMexico
  2. 2.Facultad de Ingeniería Química, Universidad Autónoma de YucatánMéridaMexico
  3. 3.Departamento de Física, Área de PolímerosUniversidad Autónoma Metropolitana-IztapalapaMexico CityMexico

Personalised recommendations