Advertisement

Polymer Bulletin

, Volume 75, Issue 9, pp 4227–4243 | Cite as

The effect of kappa carrageenan and salt on thermoreversible gelation of methylcellulose

  • Nalinda Almeida
  • Leela Rakesh
  • Jin Zhao
Original Paper
  • 111 Downloads

Abstract

Methylcellulose (MC) and kappa carrageenan (KCG) are widely used in food and pharmaceutical industries as a viscosity modifier, a gelling aid, and a film former due to their reversible thermal gelation properties. Thermoreversible gelation of MC/salt, MC/KCG/water, and MC/KCG/salt mixtures was investigated utilizing dynamic and steady shear rheological measurements. It was found that for the MC/salt mixture, gelation temperatures decreased linearly with increasing salt concentrations independent of valences of cations and molar concentrations of anions. For the MC/KCG blend, double gelation was not observed, and KCG is not influenced or disturbed the gelation properties of MC. Double gelation was observed for the mixture of MC/KCG/KCl for the low concentration of salts of 0.01 M KCl and 0.04 M KCl with the maximum moduli values for the mixture of MC/KCG/0.04 M KCl and then gradually decreased with increasing KCl salt concentration and eventually became similar to the gelation of MC solution. Therefore, KCl concentration played a major role in double gelation properties of MC/KCG/KCl mixture. It was also found that for the MC/KCG/KCl system, gelation transition matrices are linearly depending on salt concentration and independent of KCG and salt type. It was shown that for MC/salt mixture, solution rheology follows the principle of time–temperature superposition (TTS) below the gelation temperature. However, TTS failed above the gelation temperature. TTS also failed for MC/KCG and MC/KCG with low KCl concentration mixtures.

Notes

Acknowledgements

Authors are grateful to Dow Pharma and Food Solutions for providing the methylcellulose materials. We also acknowledge the financial support given by The Science of Advanced Materials at Central Michigan University.

References

  1. 1.
    Kumar V, Banker GS (1993) Chemically-modified cellulosic polymers. Drug Dev Ind Pharm 19(1–2):1–30CrossRefGoogle Scholar
  2. 2.
    Lin SY, Wang SL, Wei YS, Li MJ (2007) Temperature effect on water desorption from methylcellulose films studied by thermal FT-IR micro spectroscopy. Surf Sci 601:781–785CrossRefGoogle Scholar
  3. 3.
    Perez OE, Sanchez CC, Pilosof AM, Patino JM (2008) Dynamics of adsorption of hydroxypropyl methylcellulose at the air–water interface. Food Hydrocoll 22:387–402CrossRefGoogle Scholar
  4. 4.
    Hoffman AS (2002) Hydrogels for biomedical applications. Adv Drug Deliv Rev 54:3–12CrossRefPubMedGoogle Scholar
  5. 5.
    Chen CH, Tsai CC, Chen W, Mi FL, Liang HF, Chen SC, Sung HW (2006) Novel living cell sheet harvest system composed of thermoreversible methylcellulose hydrogels. Biomacromolecules 7(3):736–743CrossRefPubMedGoogle Scholar
  6. 6.
    Guiseley KB, Stanley N, Whitehouse P (1980) chapter 5. In: Davidson R (ed) Industrial gums. McGraw-Hill, New YorkGoogle Scholar
  7. 7.
    Piculell L (2006) Gelling carrageenans. In: Stephen AM, Phillips GO, Williams PA (eds) Food polysaccharides and their applications. CRC Press, Boca ratonGoogle Scholar
  8. 8.
    Haque A, Morris ER (1993) Thermogelation of methylcellulose. Part I: molecular structures and processes. Polymer 22(3):161–173Google Scholar
  9. 9.
    Rotbaum Y, Parvari G, Eichen Y, Rittel D (2017) Static and dynamic large strain properties of methyl cellulose hydrogels. Macromolecules 50(12):4817–4826CrossRefGoogle Scholar
  10. 10.
    Kobayashi K, Huang C, Lodge TP (1999) Thermoreversible gelation of aqueous methylcellulose solutions. Macromolecules 32:7070–7077CrossRefGoogle Scholar
  11. 11.
    Li L, Shan H, Yue CY, Lam YC, Tam KC, Hu X (2002) Thermally induced association and dissociation of methylcellulose in aqueous solutions. Langmuir 18:7291–7298CrossRefGoogle Scholar
  12. 12.
    Haque A, Richardson RK, Morris ER, Gidley MJ, Caswell DC (1993) Thermogelation of methylcellulose. Part II: effect of hydroxypropyl substituents. Carbohydr Polym 22(3):175–186CrossRefGoogle Scholar
  13. 13.
    Lam YC, Joshi SC, Tan BK (2007) Thermodynamic characteristics of gelation for methyl-cellulose hydrogels. J Therm Anal Calorim 87(2):475–482CrossRefGoogle Scholar
  14. 14.
    Ford JL (1999) Thermal analysis of hydroxypropylmethylcellulose and methylcellulose: powders, gels and matrix tablets. Int J Pharm 179(2):209–228CrossRefPubMedGoogle Scholar
  15. 15.
    Almeida N, Rakesh L, Zhao J (2014) Monovalent and divalent salt effects on thermogelation of aqueous hypromellose solutions. Food Hydrocoll 36:323–331CrossRefGoogle Scholar
  16. 16.
    Almeida N, Rakesh L, Zhao J (2014) Phase behavior of concentrated hydroxypropyl methylcellulose solution in the presence of mono and divalent salt. Carbohydr Polym 99:630–637CrossRefPubMedGoogle Scholar
  17. 17.
    Carlssona A, Karlströmb G, Lindman B (1990) Thermal gelation of nonionic cellulose ethers and ionic surfactants in water. Colloids Surf 47:147–165CrossRefGoogle Scholar
  18. 18.
    Ibbett RN, Philp K, Price DM (1992) 13C n.m.r. studies of the thermal behaviour of aqueous solutions of cellulose ethers. Polymer 33(19):4087–4095CrossRefGoogle Scholar
  19. 19.
    Kobayashi K, Huang C, Lodge TP (1993) Thermoreversible gelation of aqueous methylcellulose solutions. Macromolecules 32(21):7070–7077CrossRefGoogle Scholar
  20. 20.
    Bodvika R, Dedinaitea A, Karlsonb L, Bergströma M, Bäverbäckc P, Pedersenc JS, Edwardsd K, Karlssond G, Vargaa I, Claessona PM (2010) Aggregation and network formation of aqueous methylcellulose and hydroxypropylmethylcellulose solutions. Colloids Surf A Physicochem Eng Asp 354:162–171CrossRefGoogle Scholar
  21. 21.
    Sekiguchi Y, Sawatari C, Kondo T (2003) A gelation mechanism depending on hydrogen bond formation in regioselectively substituted O-methylcelluloses. Carbohydr Polym 53(2):145–153CrossRefGoogle Scholar
  22. 22.
    Liu SQ, Joshi SC, Lam YC, Tam KC (2008) Thermoreversible gelation of hydroxypropylmethylcellulose in simulated body fluids. Carbohydr Polym 72:133–143CrossRefGoogle Scholar
  23. 23.
    Lott JR, McAllister JW, Arvidson SA, Bates FS, Lodge TP (2013) Fibrillar structure of methylcellulose hydrogels. Biomacromolecules 14(8):2484–2488CrossRefPubMedGoogle Scholar
  24. 24.
    Xu Y, Wang C, Tam K, Li L (2004) Salt-assisted and salt-suppressed sol–gel transitions of methylcellulose in water. Langmuir 20(3):646–652CrossRefPubMedGoogle Scholar
  25. 25.
    Xu Y, Wang C, Tam KC, Li L (2004) Salt-assisted and salt-suppressed sol–gel transitions of methylcellulose in water. Langmuir 20(3):646–652CrossRefPubMedGoogle Scholar
  26. 26.
    Alexandridis P, Holzwarth JF (1997) Differential scanning calorimetry investigation of the effect of salts on aqueous solution properties of an amphiphilic block copolymer (poloxamer). Langmuir 13:6074–6082CrossRefGoogle Scholar
  27. 27.
    Iijima M, Hatakeyama T, Takahashi M, Hatakeyama H (2007) Effect of thermal history on kappa-carrageenan hydrogelation by differential scanning calorimetry. Thermochim Acta 452(1):53–58CrossRefGoogle Scholar
  28. 28.
    Yuguchi Y, Thuy TTT, Urakawa H, Kajiwara K (2002) Structural characteristics of carrageenan gels: temperature and concentration dependence. Food Hydrocoll 16(6):515–522CrossRefGoogle Scholar
  29. 29.
    Kara S, Arda E, Kavzak B, Pekcan Ö (2006) Phase transitions of κ-carrageenan gels in various types of salts. J Appl Polym Sci 102(3):3008–3016CrossRefGoogle Scholar
  30. 30.
    Kara S, Tamerler C, Bermek H, Pekcan Ö (2003) Cation effects on sol–gel and gel–sol phase transitions of κ-carrageenan-water system. Int J Biol Macromol 31(4):177–185CrossRefPubMedGoogle Scholar
  31. 31.
    Arda E, Kara S, Pekcan Ö (2009) Synergistic effect of the locust bean gum on the thermal phase transitions of κ-carrageenan gels. Food Hydrocoll 23(2):451–459CrossRefGoogle Scholar
  32. 32.
    Mangione M, Giacomazza D, Bulone D, Martorana V, San Biagio P (2003) Thermoreversible gelation of κ-Carrageenan: relation between conformational transition and aggregation. Biophys Chem 104(1):95–105CrossRefPubMedGoogle Scholar
  33. 33.
    Takemasa M, Chiba A, Date M (2002) Counterion dynamics of κ-and ι-carrageenan aqueous solutions investigated by the dielectric properties. Macromolecules 35(14):5595–5600CrossRefGoogle Scholar
  34. 34.
    Thành TT, Yuguchi Y, Mimura M, Yasunaga H, Takano R, Urakawa H, Kajiwara K (2002) Molecular characteristics and gelling properties of the carrageenan family, 1. Preparation of novel carrageenans and their dilute solution properties. Macromol Chem Phys 203(1):15–23CrossRefGoogle Scholar
  35. 35.
    Ikeda S, Morris VJ, Nishinari K (2001) Microstructure of aggregated and nonaggregated κ-carrageenan helices visualized by atomic force microscopy. Biomacromolecules 2(4):1331–1337CrossRefPubMedGoogle Scholar
  36. 36.
    MacArtain P, Jacquier J, Dawson K (2003) Physical characteristics of calcium induced κ-carrageenan networks. Carbohydr Polym 53(4):395–400CrossRefGoogle Scholar
  37. 37.
    Tomšič M, Prossnigg F, Glatter O (2008) A thermoreversible double gel: characterization of a methylcellulose and κ-carrageenan mixed system in water by SAXS, DSC and rheology. J Colloid Interface Sci 322(1):41–50CrossRefPubMedGoogle Scholar
  38. 38.
    Ferry JD (1980) Viscoelastic properties of polymers, 3rd edn. Wiley, New JerseyGoogle Scholar
  39. 39.
    Macosko CW (1994) Rheology: principles measurements and applications. Wiley-VCH, New JerseyGoogle Scholar
  40. 40.
    Liu SQ, Joshi SC, Lam YC (2008) Effects of salts in the hofmeister series and solvent isotopes on the gelation mechanisms for hydroxypropylmethylcellulose hydrogels. J Appl Polym Sci 109:363–372CrossRefGoogle Scholar
  41. 41.
    Thrimawithana TR, Young S, Dunstan DE, Alany RG (2010) Texture and rheological characterization of kappa and iota carrageenan in the presence of counter ions. Carbohydr Polym 82(1):69–77CrossRefGoogle Scholar
  42. 42.
    Desbrieres J, Hirrien M, Ross-Murphy SB (2000) Thermogelation of methylcellulose: rheological considerations. Polymer 41(7):2451–2461CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Science of Advanced MaterialsCentral Michigan UniversityMt. PleasantUSA
  2. 2.Department of Mathematics, Center for Applied Mathematics and Polymer Fluid Dynamics, Science of Advanced MaterialsCentral Michigan UniversityMt. PleasantUSA
  3. 3.Dow Pharma and Food Solutions R&D, The Dow Chemical CompanyMidlandUSA

Personalised recommendations