Polymer Bulletin

, Volume 75, Issue 9, pp 3987–4002 | Cite as

Antibacterial silver nanoparticle coating on oxo-biodegradable polyethylene film surface using modified polyethylene and corona discharge

  • Saul Sánchez-ValdesEmail author
  • Libertad Muñoz-Jiménez
  • Luis Francisco Ramos-deValle
  • Zalma Vanesa Sánchez-Martínez
  • Sergio Flores-Gallardo
  • Rogelio Rene Ramírez-Vargas
  • Eduardo Ramírez-Vargas
  • Martha Castañeda-Flores
  • Rebeca Betancourt-Galindo
  • Juan Guillermo Martínez-Colunga
  • Margarita Mondragón-Chaparro
  • Santiago Sánchez-López
Original Paper


This work compares the deposition of antimicrobial silver nanoparticles (AgNP) on oxo-biodegradable polyethylene (OB-PE) film surface by two methods: one by using blends of polyethylene (OB-PE) with maleic anhydride-modified PE (PEgMA) with two different molecular weights at various blend ratios and other by the OB-PE surface treatment with corona discharge at various treatment conditions. The surface of OB-PE film was treated by corona discharge and then both corona-treated film and OB-PE/PEgMA blend film were immersed in a colloidal solution of silver nanoparticles that were synthesized by chemical reduction of silver nitrate using ultrasound radiation. The efficiency of each surface treatment for surface modification was evaluated by FTIR-ATR spectrometry and contact angle determinations. The attachment of AgNP on OB-PE films was evaluated by UV–Vis and atomic absorption spectroscopy, STEM, XRD and antifungal efficiency. Both surface modifications induced the formation of polar groups that attached more AgNP on the OB-PE surface. Corona-treated films showed better silver attachment and antimicrobial activity but with lower mechanical properties apparently attributed to the initiation of polymer degradation by the corona discharge. The antimicrobial determinations indicated that these nanocomposite films could have different antimicrobial activity against Aspergillus niger depending on the PEgMA used and corona discharge conditions. The observed results could be applied to the design of industrial OB-PE films for packaging.


Silver/polyethylene nanocomposites Surface modification Antibacterial properties Packaging films Oxo-biodegradable films 



The authors gratefully acknowledge the financial support of CONACyT through Projects CB-104865 and CB-222805. The authors wish to thank the National Laboratory of Graphene (CONACYT-232753) and REDINMAPLAS for the facilities support. The authors also wish to thank J. A. Mercado-Silva, M. R. Rangel, M. Lozano-E, B. Huerta, G. Méndez-P, M. Teresa-Rodriguez, M. L. Guillen, Silvia-Torres, I. O. Solís de la Peña, José L. Rivera, Francisco-Zendejo, Mario-Palacios, Rodrigo-Cedillo, Jesus-Rodrıguez, L. Enrique-Reyes, Alejandro-Espinoza, Sergio-Zertuche, Fabian-Chavez, Adán-Herrera, Hugo-Jiménez, and D. Alvarado for their technical and informatics support.


  1. 1.
    Kyrikou I, Briassoulis D, Hiskakis M, Babou E (2011) Analysis of photo-chemical degradation behaviour of polyethylene mulching film with pro-oxidants. Polym Degrad Stabil 96:2237–2252CrossRefGoogle Scholar
  2. 2.
    Wrona M, Salafranca J, Nerın C (2017) Fast assessment of oxo-biodegradable polyethylene film oxidation by surface-enhanced Raman scattering with in situ formation of a silver nanoparticle substrate. J Mater Chem C 5:463–469CrossRefGoogle Scholar
  3. 3.
    Gomes LB, Klein JM, Brandalis RN, Zeni M, Zoppas BC, Grisa AMC (2014) Study of oxo-biodegradable polyethylene degradation in simulated soil materials research. Mater Res 17:121–126CrossRefGoogle Scholar
  4. 4.
    Ammala A, Bateman S, Dean K, Petinakis E, Sangwan P, Wong S, Yuan Q, Yu L, Patrick C, Leong KH (2011) An overview of degradable and biodegradable polyolefins. Prog Polym Sci 36:1015–1049CrossRefGoogle Scholar
  5. 5.
    de Carvalho CL, Silveira AF, Rosa DS (2013) A study of the controlled degradation of polypropylene containing pro-oxidant agents. SpringerPlus 2–623:1–11Google Scholar
  6. 6.
    Emamifar A (2011) Applications of antimicrobial polymer nanocomposites in food packaging Adv. In: Hashim A (ed) Nanocomp. Tech. InTech, Rijeka, pp 299–318Google Scholar
  7. 7.
    Costa C, Conte A, Buonocore GG, Del Nobile MA (2011) Antimicrobial silver-montmorillonite nanoparticles to prolong the shelf life of fresh fruit salad. Int J Food Microbiol 148:164–167PubMedGoogle Scholar
  8. 8.
    Chaloupka K, Malam Y, Seifalian AM (2010) Nanosilver as a new generation of nanoproduct in biomedical applications. Trends Biotechnol 28:580–588CrossRefPubMedGoogle Scholar
  9. 9.
    Feng M, Zhang M, Song JM, Li XG, Yu SH (2011) Ultralong silver trimolybdate nanowires: synthesis, phase transformation, stability, and their photocatalytic, optical, and electrical properties. ACS Nano 5:6726–6735CrossRefPubMedGoogle Scholar
  10. 10.
    Baker C, Pradhan A, Pakstis L, Pochan DJ, Shah SI (2005) Synthesis and antibacterial properties of silver nanoparticles. J Nanosci Nanotechnol 5:244–249CrossRefPubMedGoogle Scholar
  11. 11.
    Silver S (2003) Bacterial silver resistance: molecular biology and uses and misuses of silver compounds. FEMS Microbiol Rev 27:341–353CrossRefPubMedGoogle Scholar
  12. 12.
    Sanchez-Valdes S, Ramırez-Vargas E, Ortega-Ortiz H, Ramos-deValle LF, Mendez-Nonell J, Mondragon-Chaparro M, Neira-Velazquez G, Yañez-Flores I, Meza-Rojas DE, Lozano-Ramirez T (2012) Silver nanoparticle deposition on hydrophilic multilayer film surface and its effect on antimicrobial activity. J Appl Polym Sci 123:2643–2650CrossRefGoogle Scholar
  13. 13.
    Cornelia D, Helmut M, Alfons R (2007) Long-term antimicrobial polyamide 6/silver-nanocomposites. J Mater Sci 42:6067–6073CrossRefGoogle Scholar
  14. 14.
    Holt KB, Bard AJ (2005) Interaction of silver (I) ions with the respiratory chain of Escherichia coli: an electrochemical and scanning electrochemical microscopy study of the antimicrobial mechanism of micromolar Ag+. Biochemistry 44:13214–13223CrossRefPubMedGoogle Scholar
  15. 15.
    Hsueh YH, Lin KS, Ke WJ, Hsieh CT, Chiang CL, Tzou DY, Liu ST (2015) The antimicrobial properties of silver nanoparticles in Bacillus subtilis are mediated by released Ag+ ions. PLoS ONE 10(12):e0144306. CrossRefPubMedPubMedCentralGoogle Scholar
  16. 16.
    Fabrega J, Fawcett SR, Renshaw JC, Lead JR (2009) Silver nanoparticle impact on bacterial growth: effect of pH, concentration, and organic matter. Environ Sci Technol 43:7285–7290CrossRefPubMedGoogle Scholar
  17. 17.
    Kawata K, Osawa M, Okabe S (2009) In vitro toxicity of silver nanoparticles at noncytotoxic doses to HepG2 human hepatoma cells. Environ Sci Technol 43:6046–6051CrossRefPubMedGoogle Scholar
  18. 18.
    Suresh AK, Pelletier DA, Wang W, Morrell-Falvey JL, Gu B, Doktycz MJ (2012) Cytotoxicity induced by engineered silver nanocrystallites is dependent on surface coatings and cell types. Langmuir 28:2727–2735CrossRefPubMedGoogle Scholar
  19. 19.
    Schierholz JM, Beuth J, Rump AFE, König DP, Pulverer G (1999) Anti-infective catheters: a difficult search for effective slow delivery systems. Mat wiss u Werkstofftech 30:869–875CrossRefGoogle Scholar
  20. 20.
    Jokar M, Rahman RA, Ibrahim NA, Abdullah LC, Tan CP (2012) Melt production and antimicrobial efficiency of low-density polyethylene (LDPE)-silver nanocomposite film. Food Bioprocess Technol 5:719–728CrossRefGoogle Scholar
  21. 21.
    Sanchez-Valdes S, Ortega-Ortiz H, Ramos-de Valle LF, Medellin-Rodriguez FJ, Guedea-Miranda R (2009) Mechanical and antimicrobial properties of multilayer films with a polyethylene/silver nanocomposite layer. J Appl Polym Sci 111:953–962Google Scholar
  22. 22.
    Del Nobile MA, Cannarsi M, Altieri C, Sinigaglia M, Favia P, Iacoviello G, D’Agostino R (2004) Effect of Ag-containing nano-composite active packaging system on survival of Alicyclobacillus acidoterrestris. J Food Sci 69:379–383CrossRefGoogle Scholar
  23. 23.
    Shiraishi Y, Toshima N (1999) Colloidal silver catalysts for oxidation of ethylene. J Mol Catal A Chem 141:187–192CrossRefGoogle Scholar
  24. 24.
    van-der Leeden MC, Frens G (2002) Surface properties of plastic materials in relation to their adhering performance. Adv Eng Mater 4:280–289CrossRefGoogle Scholar
  25. 25.
    Dehnavi AS, Aroujalian A, Raisi A, Fazel S (2013) Preparation and characterization of polyethylene/silver nanocomposite films with antibacterial activity. J Appl Polym Sci 127:1180–1190CrossRefGoogle Scholar
  26. 26.
    Sadeghnejad A, Aroujalian A, Raisi A, Fazel S (2014) Antibacterial nano silver coating on the surface of polyethylene films using corona discharge. Surf Coat Tech 245:1–8CrossRefGoogle Scholar
  27. 27.
    Sanchez-Valdes S, Picazo-Rada CJ, Lopez-Quintanilla ML (2001) Polyethylene grafted maleic anhydride to improve wettability of liquid on polyethylene films. J Appl Polym Sci 79:1802–1808CrossRefGoogle Scholar
  28. 28.
    Sanchez-Valdes S, Yañez I, Ramos-deValle LF, Rodriguez OS, Lopez ML, Orona F (1998) Fusion bonding of maleated polyethylene blends to polyamide 6. Polym Eng Sci 38:127–133CrossRefGoogle Scholar
  29. 29.
    Shlosman K, Suckeveriene RY, Kligvasser JR, Tchoudakov R, Zelikman E, Semiat R, Narkis M (2014) Controlled migration of antifog additives from LLDPE compatibilized with LLDPE grafted maleic anhydride. Polym Adv Tech 25:1484–1491CrossRefGoogle Scholar
  30. 30.
    Bongiovanni R, Gagnor B, Malucelli G, Priola A (1998) Surface properties and adhesion of maleinized polyethylene films. J Mater Sci 33:1461–1464CrossRefGoogle Scholar
  31. 31.
    Japanese Industrial Standard JIS Z 2801 (2010) Test for antibacterial activity and efficacy. Japanese Standards Asociation, Tokyo, JapanGoogle Scholar
  32. 32.
    Avila-Alfaro JA, Sanchez-Valdes S, Ramos-deValle LF, Ortega-Ortiz H, Mendez-Nonell J, Patiño-Soto AP, Narro-Cespedes RI, Perera-Mercado YA, Avalos-Belmontes F (2013) Ultrasound irradiation coating of silver nanoparticle on ABS sheet surface. J Inorg Organomet Polym 23:673–683CrossRefGoogle Scholar
  33. 33.
    Henglein A (1998) Colloidal silver nanoparticles: photochemical preparation and interaction with O2, CCl4, and some metal ions. Chem Mater 10:444–450CrossRefGoogle Scholar
  34. 34.
    Sileikaite A, Puiso J, Prosycevas I (2006) Analysis of silver nanoparticles produced by chemical reduction of silver salt solution. Mater Sci 12:287–291Google Scholar
  35. 35.
    Castro-Mayorga JL, Fabra MJ, Lagaron JM (2016) Stabilized nanosilver based antimicrobial poly(3-hydroxybutyrate-co-3-hydroxyvalerate) nanocomposites of interest in active food packaging. Innov Food Sci Emerg Tech 33:524–533CrossRefGoogle Scholar
  36. 36.
    Zhao Q, Liu Y, Wang C (2005) Development and evaluation of electroless Ag-PTFE composite coatings with anti-microbial and anti-corrosion properties. Appl Surf Sci 252:1620–1627CrossRefGoogle Scholar
  37. 37.
    Widsten P, Mesic BB, Cruz CD, Fletcher GC, Chycka MA (2017) Inhibition of foodborne bacteria by antibacterial coatings printed onto food packaging films. J Food Sci Tech 54:2379–2386CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2017

Authors and Affiliations

  • Saul Sánchez-Valdes
    • 1
    Email author
  • Libertad Muñoz-Jiménez
    • 1
  • Luis Francisco Ramos-deValle
    • 1
  • Zalma Vanesa Sánchez-Martínez
    • 2
  • Sergio Flores-Gallardo
    • 3
  • Rogelio Rene Ramírez-Vargas
    • 1
  • Eduardo Ramírez-Vargas
    • 1
  • Martha Castañeda-Flores
    • 4
  • Rebeca Betancourt-Galindo
    • 1
  • Juan Guillermo Martínez-Colunga
    • 1
  • Margarita Mondragón-Chaparro
    • 5
  • Santiago Sánchez-López
    • 1
  1. 1.Centro de Investigación en Química Aplicada (CIQA)SaltilloMexico
  2. 2.Facultad de Ciencias BiológicasUniversidad Autónoma de Nuevo LeónMonterreyMexico
  3. 3.Centro de Investigación en Materiales AvanzadosChihuahuaMexico
  4. 4.Facultad de Ciencias QuímicasUniversidad Autónoma de CoahuilaSaltilloMexico
  5. 5.Instituto Politécnico NacionalESIME AzcapotzalcoCiudad de MéxicoMexico

Personalised recommendations