Polymer Bulletin

, Volume 75, Issue 9, pp 3859–3881 | Cite as

Effects of types and the ratio of poly(o-phenetidine)/TiO2 nanocomposite as anticorrosive coating

  • A. GanashEmail author
  • R. Almonshi
Original Paper


Poly o-phenetidine (POPT) and POPT/TiO2 nanocomposite with different types (Anatase, Rutile, and Mixture of them) and different ratios (0.05, 0.15, 0.20 g) of TiO2 NPs was successfully electropolymerized on 304 stainless steel material by cyclic voltammetry, and Galvanostatic and Potentiostatic technique. The obtained polymers were characterized by FT-IR, UV–vis, TEM, SEM–EDX, and XPS spectra. The anticorrosion properties examined by both of potentiodynamic Tafel polarization and electrochemical spectroscopy. The POPT/TiO2 mixture type with 0.15 g TiO2 NPs showed considerable protection against corrosion in 0.5 M HCl solution compared with the other type and ratio of POPT/TiO2 nanocomposite.


Poly o-phenetidine TiO2 NPs Anatase Rutile XPS spectra 


  1. 1.
    Kim BH, Park DH, Joo J et al (2005) Synthesis, characteristics, and field emission of doped and de-doped polypyrrole, polyaniline, poly(3,4-ethylenedioxythiophene) nanotubes and nanowires. Synth Met 150:279–284CrossRefGoogle Scholar
  2. 2.
    Mahmoudian MR, Alias Y, Basirun WJ (2010) Electrodeposition of (pyrrole-co-phenol) on steel surfaces in mixed electrolytes of oxalic acid and DBSA. Mater Chem Phys 124:1022–1028CrossRefGoogle Scholar
  3. 3.
    Asan A, Kabasakaloglu M, Aksu ML (2005) The role of oxalate ions in the coverage of mild steel with polypyrrole. Russ J Electrochem 41:154–158CrossRefGoogle Scholar
  4. 4.
    Al-Mashat L, Tran HD, Wlodarski W et al (2008) Polypyrrole nanofiber surface acoustic wave gas sensors. Sens Actuators B Chem 134:826–831CrossRefGoogle Scholar
  5. 5.
    Chaudhari S, Sainkar SR, Patil PP (2007) Anticorrosive properties of electrosynthesized poly(o-anisidine) coatings on copper from aqueous salicylate medium. J Phys Appl Phys 40:520–533CrossRefGoogle Scholar
  6. 6.
    Hür E, Bereket G, Şahin Y (2007) Anti-corrosive properties of polyaniline, poly(2-toluidine), and poly(aniline-co-2-toluidine) coatings on stainless steel. Curr Appl Phys 7:597–604CrossRefGoogle Scholar
  7. 7.
    Madhankumar A, Rajendran N (2012) A promising copolymer of p-phenylendiamine and o-aminophenol: chemical and electrochemical synthesis, characterization and its corrosion protection aspect on mild steel. Synth Met 162:176–185CrossRefGoogle Scholar
  8. 8.
    Es-saheb M, Elzatahry A, Sherif E, Alkaraki A (2012) A novel electrospinning application for polyvinyl chloride nanofiber coating deposition as a corrosion inhibitor for aluminum, steel, and brass in chloride solutions. Int J Electrochem Sci 7:5962–5976Google Scholar
  9. 9.
    Rohwerder M, Michalik A (2007) Conducting polymers for corrosion protection: what makes the difference between failure and success? Electrochim Acta 53:1300–1313CrossRefGoogle Scholar
  10. 10.
    Tanveer N, Mobin M (2011) Corrosion performance of chemically synthesized poly(aniline-co-o-toluidine) copolymer coating on mild steel. Miner J Mater Charact Eng 10:735Google Scholar
  11. 11.
    Mahmoudian MR, Alias Y, Basirun WJ, Ebadi M (2013) Effects of different polypyrrole/TiO2 nanocomposite morphologies in polyvinyl butyral coatings for preventing the corrosion of mild steel. Appl Surf Sci 268:302–311CrossRefGoogle Scholar
  12. 12.
    Sathiyanarayanan S, Azim SS, Venkatachari G (2007) A new corrosion protection coating with polyaniline—TiO2 composite for steel. Electrochim Acta 52:2068–2074CrossRefGoogle Scholar
  13. 13.
    Su S-J, Kuramoto N (2000) Processable polyaniline–titanium dioxide nanocomposites: effect of titanium dioxide on the conductivity. Synth Met 114:147–153CrossRefGoogle Scholar
  14. 14.
    Nascimento GM, Constantino VRL, Temperini MLA (2002) Spectroscopic characterization of a new type of conducting polymer—clay nanocomposite. Macromolecules 35:7535–7537CrossRefGoogle Scholar
  15. 15.
    Biswas M, Sinha Ray S, Liu Y (1999) Water dispersible conducting nanocomposites of poly(N-vinylcarbazole), polypyrrole and polyaniline with nanodimensional manganese (IV) oxide. Synth Met 105:99–105CrossRefGoogle Scholar
  16. 16.
    Ray SS, Biswas M (2000) Water-dispersible conducting nanocomposites of polyaniline and poly(N-vinylcarbazole) with nanodimensional zirconium dioxide. Synth Met 108:231–236CrossRefGoogle Scholar
  17. 17.
    Hermas AA, Al-Juaid SS, Al-Thabaiti SA et al (2012) In situ electropolymerization of conducting polypyrrole/carbon nanotubes composites on stainless steel: role of carbon nanotubes types. Prog Org Coat 75:404–410CrossRefGoogle Scholar
  18. 18.
    Ganash A (2014) J. Nanomater. 2014:40CrossRefGoogle Scholar
  19. 19.
    Karpakam V, Kamaraj K, Sathiyanarayanan S (2011) Electrosynthesis of PANI-Nano TiO2 composite coating on steel and its anti-corrosion performance. J Electrochem Soc 158:C416–C423CrossRefGoogle Scholar
  20. 20.
    Jafari Y, Shabani-Nooshabadi M, Ghoreishi SM (2014) Electropolymerized coatings of poly(o-anisidine) and poly(o-anisidine)-TiO2 nanocomposite on aluminum alloy 3004 by using the galvanostatic method and their corrosion protection performance. Polym Adv Technol 25:279–287CrossRefGoogle Scholar
  21. 21.
    Ates M, Kalender O (2015) Comparison of anticorrosion behavior of polyaniline and poly(3,4-methylenedioxyaniline) and their titanium dioxide nanocomposites. High Perform Polym 27:685–693CrossRefGoogle Scholar
  22. 22.
    Lenz DM, Delamar M, Ferreira CA (2003) Application of polypyrrole / TiO2 composite films as corrosion protection of mild steel. J Electroanal Chem 540:35–44CrossRefGoogle Scholar
  23. 23.
    Rathod RC, Umare SS, Didolkar VK et al (2013) Production and Characterization of PANI/TiO2 Nanocomposites: anticorrosive Application on 316LN SS. Trans Indian Inst Met 66:97–104CrossRefGoogle Scholar
  24. 24.
    Li X-G, Duan W, Huang M-R, Rodriguez LNJ (2005) Electrocopolymerization of meta-phenylenediamine and ortho-phenetidine. React Funct Polym 62:261–270CrossRefGoogle Scholar
  25. 25.
    Özyılmaz AT, Ozyilmaz G, Çolak N (2006) Novel synthesis medium for poly(aniline-co-o-anisidine). Surf Coat Technol 201:2484–2490CrossRefGoogle Scholar
  26. 26.
    Ganash AA, Mahgoub FM (2016) Electrochemical synthesis and corrosion performance of poly o-anisidine on 304 stainless steel. Prot Met Phys Chem Surf 52:555–561CrossRefGoogle Scholar
  27. 27.
    Ocón P, Cristobal AB, Herrasti P, Fatas E (2005) Corrosion performance of conducting polymer coatings applied on mild steel. Corros Sci 47:649–662CrossRefGoogle Scholar
  28. 28.
    Li X-G, Huang M-R, Duan W, Yang Y-L (2002) Novel multifunctional polymers from aromatic diamines by oxidative polymerizations. Chem Rev 102:2925–3030CrossRefPubMedGoogle Scholar
  29. 29.
    Murali MG, Ramya MG, Udayakumar D et al (2010) Synthesis and third order optical nonlinearity studies of the donor–acceptor conjugated polymer, poly(2-[3,4-didodecyloxy-5-(1,3,4-oxadiazol-2-yl)thiophen-2-yl]-5-phenyl-1,3,4-oxadiazole) and a polymer/TiO2 nanocomposite. Synth Met 160:2520–2525CrossRefGoogle Scholar
  30. 30.
    Xu J-C, Liu W-M, Li H-L (2005) Titanium dioxide doped polyaniline. Mater Sci Eng C 25:444–447CrossRefGoogle Scholar
  31. 31.
    Wang N, Li J, Lv W et al (2015) Synthesis of polyaniline/TiO2 composite with excellent adsorption performance on acid red G. RSC Adv 5:21132–21141CrossRefGoogle Scholar
  32. 32.
    Shi M, Wei W, Jiang Z et al (2016) Biomass-derived multifunctional TiO2/carbonaceous aerogel composite as a highly efficient photocatalyst. RSC Adv 6:25255–25266CrossRefGoogle Scholar
  33. 33.
    Tan L-L, Ong W-J, Chai S-P et al (2015) Visible-light-active oxygen-rich TiO2 decorated 2D graphene oxide with enhanced photocatalytic activity toward carbon dioxide reduction. Appl Catal B Environ 179:160–170CrossRefGoogle Scholar
  34. 34.
    White RJ, Budarin V, Luque R et al (2009) Tuneable porous carbonaceous materials from renewable resources. Chem Soc Rev 38:3401–3418CrossRefPubMedGoogle Scholar
  35. 35.
    Mansfeld F, Lin S, Kim K, Shih H (1987) Pitting and surface modification of SIC/Al. Corros Sci 27:997–1000CrossRefGoogle Scholar
  36. 36.
    Somani PR, Marimuthu R, Mulik UP et al (1999) High piezoresistivity and its origin in conducting polyaniline/TiO2 composites. Synth Met 106:45–52CrossRefGoogle Scholar
  37. 37.
    Dong B, He B-L, Xu C-L, Li H-L (2007) Preparation and electrochemical characterization of polyaniline/multi-walled carbon nanotubes composites for supercapacitor. Mater Sci Eng B 143:7–13CrossRefGoogle Scholar
  38. 38.
    Liu YC, Huang JM, Tsai CE, Chuang TC, Wang CC (2004) Effect of TiO2 nanoparticles on the electropolymerization of polypyrrole. Chem Phys Lett 387:155–159CrossRefGoogle Scholar
  39. 39.
    Sun Q, Schork FJ, Deng Y (2007) Water-based polymer/clay nanocomposite suspension for improving water and moisture barrier in coating. Compos Sci Technol 67:1823–1829CrossRefGoogle Scholar
  40. 40.
    Deng Z, Smyrl WH, White HS (1989) Stabilization of metal–metal oxide surfaces using electroactive polymer films. J Electrochem Soc 136:2152–2158CrossRefGoogle Scholar
  41. 41.
    Ren S, Barkey D (1992) Electrochemically prepared poly(3-methylthiophene) films for passivation of 430 stainless steel. J Electrochem Soc 139:1021–1026CrossRefGoogle Scholar
  42. 42.
    Radhakrishnan S, Siju CR, Mahanta D et al (2009) Conducting polyaniline–nano-TiO2 composites for smart corrosion resistant coatings. Electrochim Acta 54:1249–1254CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2017

Authors and Affiliations

  1. 1.Chemistry Department, Faculty of ScienceKing Abdulaziz UniversityJeddahSaudi Arabia

Personalised recommendations