Advertisement

Big-Data Analytics transformiert die Lebenswissenschaften

  • Ivo F. SbalzariniEmail author
Open Access
HAUPTBEITRAG BIG-DATA ANALYTICS
  • 31 Downloads

References

  1. 1.
    Afshar Y, Sbalzarini IF (2016) A parallel distributed-memory particle method enables acquisition-rate segmentation of large fluorescence microscopy images. PLoS One 11(4):e0152528CrossRefGoogle Scholar
  2. 2.
    Asmus J, Müller CL, Sbalzarini IF (2017) Lp-Adaptation: Simultaneous design centering and robustness estimation of electronic and biological systems. Sci Rep 7(1):6660CrossRefGoogle Scholar
  3. 3.
    Cheeseman BL, Günther U, Gonciarz K, Susik M, Sbalzarini IF (2018) Adaptive particle representation of fluorescence microscopy images. Nat Commun 9:5160CrossRefGoogle Scholar
  4. 4.
    Goehring NW, Khuc Trong P, Bois JS, Chowdhury D, Nicola EM, Hyman AA, Grill SW (2011) Polarization of PAR proteins by advective triggering of a pattern-forming system. Science 334(6059):1137–1141CrossRefGoogle Scholar
  5. 5.
    Halevy A, Norvig P, Pereira F (2009) The Unreasonable Effectiveness of Data. IEEE Intell Syst 24(2):8–12CrossRefGoogle Scholar
  6. 6.
    Hecht M, Hoffmann KB, Cheeseman BL, Sbalzarini IF (2018) Multivariate Newton Interpolation. arXiv:1812.04256Google Scholar
  7. 7.
    Howard J, Grill SW and Bois JS (2011) Turing’s next steps: the mechanochemical basis of morphogenesis. Nat Rev Mol Cell Biol 12:392–398.CrossRefGoogle Scholar
  8. 8.
    Huisken J (2012) Slicing embryos gently with laser light sheets. Bioessays 34(5):406–411CrossRefGoogle Scholar
  9. 9.
    Kjellström G, Taxen L (1981) Stochastic optimization in system design. IEEE Trans Circ Syst 28(7):702–715MathSciNetCrossRefGoogle Scholar
  10. 10.
    Lillacci G, Benenson Y, Khammash M (2018) Synthetic control systems for high performance gene expression in mammalian cells. Nucl Acids Res 46(18):9855–9863CrossRefGoogle Scholar
  11. 11.
    Maddu S, Cheeseman BL, Sbalzarini IF, Müller CL (2019) Stability selection enables robust learning of partial differential equations from limited noisy data. arXiv:1907.07810Google Scholar
  12. 12.
    Navlakha S and Bar-Joseph Z (2011) Algorithms in nature: the convergence of systems biology and computational thinking. Nat EMBO Mol Syst Biol 7:546CrossRefGoogle Scholar
  13. 13.
    Rudy SH, Brunton SL, Proctor JL, Kutz JN (2017) Data-driven discovery of partial differential equations. Sci Adv 3(4):e1602614CrossRefGoogle Scholar
  14. 14.
    Schrader B, Reboux S, Sbalzarini IF (2010) Discretization correction of general integral PSE operators in particle methods. J Comput Phys 229:4159–4182MathSciNetCrossRefGoogle Scholar
  15. 15.
    Turing AM (1952) The chemical basis of morphogenesis. Phil Trans R Soc London B237:37–72MathSciNetzbMATHGoogle Scholar
  16. 16.
    Wigner EP (1960) The Unreasonable Effectiveness of Mathematics in the Natural Sciences. Commun Pure Appl Math 13:1–14CrossRefGoogle Scholar

Copyright information

© The Author(s) 2019

Authors and Affiliations

  1. 1.Fakultät Informatik, Institut für Künstliche Intelligenz, Professur für Wissenschaftliches Rechnen in der SystembiologieTechnische Universität DresdenDresdenDeutschland
  2. 2.Max-Planck-Institut für Molekulare Zellbiologie und GenetikZentrum für Systembiologie DresdenDresdenDeutschland

Personalised recommendations