Advertisement

Situativer Datenschutz im Fog-Computing

  • Zoltán Ádám MannEmail author
  • Andreas Metzger
  • Klaus Pohl
HAUPTBEITRAG SITUATIVER DATENSCHUTZ IM FOG-COMPUTING
  • 5 Downloads

Zusammenfassung

Fog-Computing erlaubt, Software-Code oder Daten dynamisch von ressourcenschwachen Endgeräten an leistungsstärkere Geräte am Rande des Netzwerks und in der Cloud auszulagern. Eine solche dynamische Auslagerung ermöglicht eine performante Ausführung rechenintensiver Aufgaben, bei gleichzeitig geringer Latenzzeit für die Datenübertragung. Beim Datenschutz ergeben sich im Fog-Computing jedoch spezifische Herausforderungen. Wir beschreiben die wesentlichen Herausforderungen des Datenschutzes im Fog-Computing und diskutieren, wie diese Herausforderungen durch die situative Kombination verschiedener Datenschutztechniken zur Laufzeit adressiert werden können.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Alrawais A, Alhothaily A, Hu C, Cheng X (2017) Fog computing for the Internet of Things: Security and privacy issues. IEEE Intern Comput March/April 2017:34–42Google Scholar
  2. 2.
    Aral A, Brandic I (2017) Quality of Service channelling for latency sensitive edge applications. IEEE International Conference on Edge Computing, pp 166–173Google Scholar
  3. 3.
    Ardagna CA, Asal R, Damiani E, Vu QH (2015) From security to assurance in the cloud: A survey. ACM Computing Surveys 48(1):art 2Google Scholar
  4. 4.
    Costan V, Lebedev IA, Devadas S (2016) Sanctum: Minimal hardware extensions for strong software isolation. USENIX Security Symposium, pp 857–874Google Scholar
  5. 5.
    Di Nitto E, Ghezzi C, Metzger A, Papazoglou M, Pohl K (2008) A journey to highly dynamic, self-adaptive service-based applications. Autom Softw Engin 15(3–4):313–341CrossRefGoogle Scholar
  6. 6.
    He T, Ciftcioglu EN, Wang S, Chan KS (2017) Location privacy in mobile edge clouds: A chaff-based approach. IEEE J Sel Areas Commun 35(11):2625–2636CrossRefGoogle Scholar
  7. 7.
    Heinrich R, Jung R, Schmieders E, Metzger A, Hasselbring W, Reussner R, Pohl K (2015) Architectural run-time models for operator-in-the-loop adaptation of cloud applications. In: IEEE 9th International Symposium on the Maintenance and Evolution of Service-Oriented and Cloud-Based Environments, pp 36–40Google Scholar
  8. 8.
    Kephart JO, Chess DM (2003) The vision of autonomic computing. Computer 36(1):41–50MathSciNetCrossRefGoogle Scholar
  9. 9.
    Luthra M, Koldehofe B, Weisenburger P, Salvaneschi G (2018) TCEP: Adapting to dynamic user environment by enabling transitions between operator placement mechanisms. In: 12th ACM International Conference on Distributed and Event-based Systems, pp 136–147Google Scholar
  10. 10.
    Mann ZÁ (2016) Multicore-aware virtual machine placement in cloud data centers. IEEE T Comput 65(11):3357–3369MathSciNetCrossRefGoogle Scholar
  11. 11.
    Mann ZÁ, Metzger A (2017) Optimized cloud deployment of multi-tenant software considering data protection concerns. In: 17th IEEE/ACM International Symposium on Cluster, Cloud and Grid Computing, pp 609–618Google Scholar
  12. 12.
    Mann ZÁ, Metzger A (2018) The special case of data protection and self-adaptation. In: ACM/IEEE 13th International Symposium on Software Engineering for Adaptive and Self-Managing Systems, pp 190–191Google Scholar
  13. 13.
    Mann ZÁ, Metzger A, Schoenen S (2018) Towards a run-time model for data protection in the cloud. In: Schaefer I, Karagiannis D, Vogelsang A, Méndez D, Seidl C (Hrsg) Modellierung 2018. Gesellschaft für Informatik e. V., pp 71–86Google Scholar
  14. 14.
    Mattern F, Floerkemeier C (2010) Vom Internet der Computer zum Internet der Dinge. Informatik-Spektrum 33(2):107–121CrossRefGoogle Scholar
  15. 15.
    Orsini G, Bade D, Lamersdorf W (2016) CloudAware: A context-adaptive middleware for mobile edge and cloud computing applications. In: IEEE International Workshops on Foundations and Applications of Self* Systems, pp 216–221Google Scholar
  16. 16.
    Palm A, Mann ZÁ, Metzger A (2018) Modeling data protection vulnerabilities of cloud systems using risk patterns. In: 10th System Analysis and Modeling Conference, pp 1–19Google Scholar
  17. 17.
    Riaz Z, Dürr F, Rothermel K (2016) On the privacy of frequently visited user locations. In: 17th IEEE International Conference on Mobile Data Management, vol 1, pp 282–291Google Scholar
  18. 18.
    Richerzhagen B, Koldehofe B, Steinmetz R (2015) Immense dynamism. German Research 2/2015, Wiley VCH, pp 24–27Google Scholar
  19. 19.
    Salehie M, Tahvildari L (2009) Self-adaptive software: Landscape and research challenges. ACM Trans Auton Adapt Sys 4(2):art 14Google Scholar
  20. 20.
    Schmieders E, Metzger A, Pohl K (2015) Runtime model-based privacy checks of big data cloud services. In: International Conference on Service-Oriented Computing, pp 71–86Google Scholar
  21. 21.
    Schoenen S, Mann ZÁ, Metzger A (2018) Using risk patterns to identify violations of data protection policies in cloud systems. In: Braubach L et al (eds) Service-Oriented Computing – ICSOC 2017 Workshops. LNCS vol 10797, pp 296–307Google Scholar
  22. 22.
    Skarlat O, Schulte S, Borkowski M, Leitner P (2016) Resource provisioning for IoT services in the fog. In: IEEE 9th International Conference on Service-Oriented Computing and Applications, pp 32–39Google Scholar
  23. 23.
    Stojmenovic I, Wen S (2014) The fog computing paradigm: Scenarios and security issues. In: Federated Conference on Computer Science and Information Systems, pp 1–8Google Scholar
  24. 24.
    Tietz V, Blichmann G, Hübsch G (2011) Cloud-Entwicklungsmethoden. Informatik-Spektrum 34(4):345–354CrossRefGoogle Scholar
  25. 25.
    van Dijk M, Gentry C, Halevi S, Vaikuntanathan V (2010) Fully homomorphic encryption over the integers. In: Advances in Cryptology – EUROCRYPT 2010. LNCS vol 6110, pp 24–43Google Scholar
  26. 26.
    Wang W, Hu Y, Chen L, Huang X, Sunar B (2015) Exploring the feasibility of fully homomorphic encryption. IEEE Trans Comput 64(3):698–706MathSciNetCrossRefzbMATHGoogle Scholar
  27. 27.
    Wang L, Jiao L, Li J, Mühlhäuser M (2017) Online resource allocation for arbitrary user mobility in distributed edge clouds. In: IEEE 37th International Conference on Distributed Computing Systems, pp 1281–1290Google Scholar
  28. 28.
    Wrobel S, Voss H, Köhler J, Beyer U, Auer S (2015) Big data, big opportunities. Informatik-Spektrum 38(5):370–378CrossRefGoogle Scholar
  29. 29.
    Yi S, Li C, Li Q (2015) A survey of fog computing: Concepts, applications and issues. In: Workshop on Mobile Big Data, pp 37–42Google Scholar
  30. 30.
    Yi S, Qin Z, Li Q (2015) Security and privacy issues of fog computing: A survey. In: International Conference on Wireless Algorithms, Systems, and Applications, pp 685–695Google Scholar

Copyright information

© Springer-Verlag GmbH Deutschland, ein Teil von Springer Nature 2019

Authors and Affiliations

  • Zoltán Ádám Mann
    • 1
    Email author
  • Andreas Metzger
    • 1
  • Klaus Pohl
    • 1
  1. 1.paluno, The Ruhr Institute for Software TechnologyUniversität Duisburg-EssenEssenDeutschland

Personalised recommendations