Advertisement

Evaluation of BMP-mediated patterning in a 3D mathematical model of the zebrafish blastula embryo

  • Linlin Li
  • Xu Wang
  • Mary C. Mullins
  • David M. UmulisEmail author
Article
  • 33 Downloads

Abstract

Bone Morphogenetic Proteins (BMPs) play an important role in dorsal–ventral (DV) patterning of the early zebrafish embryo. BMP signaling is regulated by a network of extracellular and intracellular factors that impact the range and signaling of BMP ligands. Recent advances in understanding the mechanism of pattern formation support a source-sink mechanism, however it is not clear how the source-sink mechanism shapes patterns in 3D, nor how sensitive the pattern is to biophysical rates and boundary conditions along both the anteroposterior (AP) and DV axes of the embryo. We propose a new three-dimensional growing Partial Differential Equation (PDE)-based model to simulate the BMP patterning process during the blastula stage. This model provides a starting point to elucidate how different mechanisms and components work together in 3D to create and maintain the BMP gradient in the embryo. We also show how the 3D model fits the BMP signaling gradient data at multiple time points along both axes. Furthermore, sensitivity analysis of the model suggests that the spatiotemporal patterns of Chordin and BMP ligand gene expression are dominant drivers of shape in 3D and more work is needed to quantify the spatiotemporal profiles of gene and protein expression to further refine the models.

Keywords

Pattern formation Morphogen gradient Zebrafish PDE BMP 

Mathematics Subject Classification

35Q92 92C42 92C15 

Notes

Acknowledgements

We would like to acknowledge funding from NIH Grants R01GM132501 to DMU, and NIH R01GM056326 and R35GM131908 to MCM, and editing help from Matt Thompson.

References

  1. Bhat N, Kwon H-J, Riley BB (2013) A gene network that coordinates preplacodal competence and neural crest specification in zebrafish. Dev Biol 373:107–117.  https://doi.org/10.1016/J.YDBIO.2012.10.012 CrossRefGoogle Scholar
  2. Bird RB, Stewart WE, Lightfoot EN (2006) Transport phenomena, Revised 2 edn. Wiley, HobokenGoogle Scholar
  3. Blader P, Rastegar S, Fischer N, Strähle U (1997) Cleavage of the BMP-4 antagonist chordin by zebrafish tolloid. Science (80-) 278:1937–1940.  https://doi.org/10.1126/science.278.5345.1937 CrossRefGoogle Scholar
  4. Bökel C, Brand M (2013) Generation and interpretation of FGF morphogen gradients in vertebrates. Curr Opin Genet Dev 23:415–422.  https://doi.org/10.1016/J.GDE.2013.03.002 CrossRefGoogle Scholar
  5. Crampin E, Gaffney EA, Maini PK (1999) Reaction and diffusion on growing domains: scenarios for robust pattern formation. Bull Math Biol 61:1093–1120.  https://doi.org/10.1006/bulm.1999.0131 CrossRefzbMATHGoogle Scholar
  6. Dal-Pra S, Fürthauer M, Van-Celst J et al (2006) Noggin1 and Follistatin-like2 function redundantly to Chordin to antagonize BMP activity. Dev Biol 298:514–526.  https://doi.org/10.1016/j.ydbio.2006.07.002 CrossRefGoogle Scholar
  7. De Robertis EM, Sasai Y (1996) A common plan for dorsoventral patterning in Bilateria. Nature 380:37–40.  https://doi.org/10.1038/380037a0 CrossRefGoogle Scholar
  8. Dutko JA, Mullins MC (2011) SnapShot: BMP signaling in development. Cell 145:636-636.e2.  https://doi.org/10.1016/j.cell.2011.05.001 CrossRefGoogle Scholar
  9. Fried P, Iber D (2014) Dynamic scaling of morphogen gradients on growing domains. Nat Commun 5:5077.  https://doi.org/10.1038/ncomms6077 CrossRefGoogle Scholar
  10. Hashiguchi M, Mullins MC (2013) Anteroposterior and dorsoventral patterning are coordinated by an identical patterning clock. Development 140:1970–1980.  https://doi.org/10.1242/dev.088104 CrossRefGoogle Scholar
  11. Hengenius JB, Gribskov M, Rundell AE et al (2011) Analysis of gap gene regulation in a 3D organism-scale model of the Drosophila melanogaster embryo. PLoS ONE 6:e26797.  https://doi.org/10.1371/journal.pone.0026797 CrossRefGoogle Scholar
  12. Holley SA, Ferguson EL (1997) Fish are like flies are like frogs: conservation of dorsal–ventral patterning mechanisms. BioEssays 19:281–284.  https://doi.org/10.1002/bies.950190404 CrossRefGoogle Scholar
  13. Keller PJ, Schmidt AD, Wittbrodt J, Stelzer EHK (2008) Reconstruction of zebrafish early embryonic development by scanned light sheet microscopy. Science 322:1065–1069.  https://doi.org/10.1126/science.1162493 CrossRefGoogle Scholar
  14. Khokha MK, Yeh J, Grammer TC, Harland RM (2005) Depletion of three BMP antagonists from spemann’s organizer leads to a catastrophic loss of dorsal structures. Dev Cell 8:401–411.  https://doi.org/10.1016/j.devcel.2005.01.013 CrossRefGoogle Scholar
  15. Klika V, Gaffney EA (2017) History dependence and the continuum approximation breakdown: the impact of domain growth on Turing’s instability. Proc R Soc A Math Phys Eng Sci 473:20160744.  https://doi.org/10.1098/rspa.2016.0744 MathSciNetCrossRefzbMATHGoogle Scholar
  16. Lecuit T, Cohen SM (1998) Dpp receptor levels contribute to shaping the Dpp morphogen gradient in the Drosophila wing imaginal disc. Development 125:4901–4907Google Scholar
  17. Lepage SE, Bruce AEE (2010) Zebrafish epiboly: mechanics and mechanisms. Int J Dev Biol 54:1213–1228.  https://doi.org/10.1387/ijdb.093028sl CrossRefGoogle Scholar
  18. Little SC, Mullins MC (2006) Extracellular modulation of BMP activity in patterning the dorsoventral axis. Birth Defects Res Part C Embryo Today Rev 78:224–242.  https://doi.org/10.1002/bdrc.20079 CrossRefGoogle Scholar
  19. Luo J-Y, Zhang Y, Wang L, Huang Y (2015) Regulators and effectors of bone morphogenetic protein signalling in the cardiovascular system. J Physiol 593:2995–3011.  https://doi.org/10.1113/JP270207 CrossRefGoogle Scholar
  20. Madzvamuse A, Maini PK, Wathen AJ (2005) A moving grid finite element method for the simulation of pattern generation by turing models on growing domains. J Sci Comput 24:247–262.  https://doi.org/10.1007/s10915-004-4617-7 MathSciNetCrossRefzbMATHGoogle Scholar
  21. Maini PK, Solursh M (1991) Cellular mechanisms of pattern formation in the developing limb. Int Rev Cytol 129:91–133CrossRefGoogle Scholar
  22. Piccolo S, Agius E, Lu B et al (1997) Cleavage of chordin by xolloid metalloprotease suggests a role for proteolytic processing in the regulation of spemann organizer activity. Cell 91:407–416.  https://doi.org/10.1016/S0092-8674(00)80424-9 CrossRefGoogle Scholar
  23. Pomreinke AP, Soh GH, Rogers KW et al (2017) Dynamics of BMP signaling and distribution during zebrafish dorsal-ventral patterning. Elife 6:e25861.  https://doi.org/10.7554/eLife.25861 CrossRefGoogle Scholar
  24. Rogers KW, Schier AF (2011) Morphogen gradients: from generation to interpretation. Annu Rev Cell Dev Biol 27:377–407.  https://doi.org/10.1146/annurev-cellbio-092910-154148 CrossRefGoogle Scholar
  25. Rushlow CA, Shvartsman SY (2012) Temporal dynamics, spatial range, and transcriptional interpretation of the dorsal morphogen gradient. Curr Opin Genet Dev 22:542–546.  https://doi.org/10.1016/J.GDE.2012.08.005 CrossRefGoogle Scholar
  26. Sansom SN, Livesey FJ (2009) Gradients in the brain: the control of the development of form and function in the cerebral cortex. Cold Spring Harb Perspect Biol 1:a002519.  https://doi.org/10.1101/cshperspect.a002519 CrossRefGoogle Scholar
  27. Thibault J, Bergeron S, Bonin HW (1987) On finite-difference solutions of the heat equation in spherical coordinates. Numer Heat Transf 12:457–474.  https://doi.org/10.1080/10407788708913597 CrossRefzbMATHGoogle Scholar
  28. Tuazon FB, Mullins MC (2015) Temporally coordinated signals progressively pattern the anteroposterior and dorsoventral body axes. Semin Cell Dev Biol 42:118–133.  https://doi.org/10.1016/j.semcdb.2015.06.003 CrossRefGoogle Scholar
  29. Tucker JA, Mintzer KA, Mullins MC (2008) The BMP signaling gradient patterns dorsoventral tissues in a temporally progressive manner along the anteroposterior axis. Dev Cell 14:108–119.  https://doi.org/10.1016/j.devcel.2007.11.004 CrossRefGoogle Scholar
  30. Umulis DM, Othmer HG (2015) The role of mathematical models in understanding pattern formation in developmental biology. Bull Math Biol 77:817–845.  https://doi.org/10.1007/s11538-014-0019-7 MathSciNetCrossRefzbMATHGoogle Scholar
  31. Umulis D, O’Connor MB, Blair SS (2009) The extracellular regulation of bone morphogenetic protein signaling. Development 136:3715–3728.  https://doi.org/10.1242/dev.031534 CrossRefGoogle Scholar
  32. Umulis DM, Shimmi O, O’Connor MB, Othmer HG (2010) Organism-scale modeling of early drosophila patterning via bone morphogenetic proteins. Dev Cell 18:260–274.  https://doi.org/10.1016/j.devcel.2010.01.006 CrossRefGoogle Scholar
  33. von Bubnoff A, Cho KWY (2001) Intracellular BMP signaling regulation in vertebrates: pathway or network? Dev Biol 239:1–14.  https://doi.org/10.1006/dbio.2001.0388 CrossRefGoogle Scholar
  34. Wagner DO, Sieber C, Bhushan R et al (2010) BMPs: from bone to body morphogenetic proteins. Sci Signal 3:mr1.  https://doi.org/10.1126/scisignal.3107mr1 CrossRefGoogle Scholar
  35. Wang RN, Green J, Wang Z et al (2014) Bone morphogenetic protein (BMP) signaling in development and human diseases. Genes Dis 1:87–105.  https://doi.org/10.1016/j.gendis.2014.07.005 CrossRefGoogle Scholar
  36. Warga RM, Kimmel CB (1990) Cell movements during epiboly and gastrulation in zebrafish. Development 108:569–580Google Scholar
  37. Zhang YT, Lander AD, Nie Q (2007) Computational analysis of BMP gradients in dorsal-ventral patterning of the zebrafish embryo. J Theor Biol 248:579–589.  https://doi.org/10.1016/j.jtbi.2007.05.026 MathSciNetCrossRefGoogle Scholar
  38. Zinski J, Bu Y, Wang X et al (2017) Systems biology derived source-sink mechanism of bmp gradient formation. Elife 6:1–32.  https://doi.org/10.7554/eLife.22199 CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  • Linlin Li
    • 1
  • Xu Wang
    • 2
  • Mary C. Mullins
    • 3
  • David M. Umulis
    • 1
    • 2
    Email author
  1. 1.Weldon School of Biomedical EngineeringPurdue UniversityWest LafayetteUSA
  2. 2.Department of Agricultural and Biological EngineeringPurdue UniversityWest LafayetteUSA
  3. 3.Department of Cell and Developmental Biology, Perelman School of MedicineUniversity of PennsylvaniaPhiladelphiaUSA

Personalised recommendations