Advertisement

Journal of Mathematical Biology

, Volume 78, Issue 1–2, pp 225–256 | Cite as

State estimators for some epidemiological systems

  • A. Iggidr
  • M. O. SouzaEmail author
Article

Abstract

We consider a class of epidemiological models that includes most well-known dynamics for directly transmitted diseases, and some reduced models for indirectly transmitted diseases. We then propose a simple observer that can be applied to models in this class. The error analysis of this observer leads to a non-autonomous error equation, and a new bound for fundamental matrices is also presented. We analyse and implement this observer in two examples: the classical SIR model, and a reduced Bailey-Dietz model for vector-borne diseases. In both cases we obtain arbitrary exponential convergence of the observer. For the latter model, we also applied the observer to recover the number of susceptible using dengue infection data from a district in the city of Rio de Janeiro.

Keywords

Dengue Epidemic models Observers State estimation 

Mathematics Subject Classification

92D30 34E13 34A30 93B07 93B40 

References

  1. Abdelhedi A, Boutat D, Sbita L, Tami R (2014) Extended observer to estimate the spreading of contagious disease. In 2014 European control conference (ECC), pp 1843–1848.  https://doi.org/10.1109/ECC.2014.6862172
  2. Abdelhedi A, Boutat D, Sbita L, Tami R, Liu D-Y (2016) Observer design for a class of nonlinear piecewise systems. Application to an epidemic model with treatment. Math Biosci 271:128–135MathSciNetCrossRefzbMATHGoogle Scholar
  3. Alonso-Quesada S, De la Sen M, Agarwal RP, Ibeas A (2012) An observer-based vaccination control law for an SEIR epidemic model based on feedback linearization techniques for nonlinear systems. Adv Differ Equ 161:32MathSciNetzbMATHGoogle Scholar
  4. Alvarez-Ramirez J, Meraz M, Velasco-Hernandez JX (2000) Feedback control of the chemotherapy of HIV. Int J Bifurc Chaos 10(09):2207–2219.  https://doi.org/10.1142/S0218127400001377 CrossRefzbMATHGoogle Scholar
  5. Anderson RM, May RM (1991) Infectious diseases of humans: dynamics and control. Oxford Science Publications, OxfordGoogle Scholar
  6. Arino J, van den Driessche P (2003) A multi-city epidemic model. Math Popul Stud 10(3):175–193.  https://doi.org/10.1080/08898480306720 MathSciNetCrossRefzbMATHGoogle Scholar
  7. Aronna MS, Bliman P-A (2018) Interval observer for uncertain time-varying SIR-SI model of vector-borne disease. In Proceedings of European control conference. URL https://hal.inria.fr/hal-01493078
  8. Audoly S, D’Angio L, Saccomani MP, Cobelli C (1998) Global identifiability of linear compartmental models-a computer algebra algorithm. IEEE Trans Biomed Eng 45(1):36–47CrossRefzbMATHGoogle Scholar
  9. Bailey N (1975) The mathematical theory of infectious diseases and its applications. Griffin, LondonzbMATHGoogle Scholar
  10. Becker NG (1989) Analysis of infectious disease data, vol 33. CRC Press, Boca RatonGoogle Scholar
  11. Besançon G (Ed) (2007) Nonlinear observers and applications. In Papers based on the presentations at the 28th Grenoble international summer school on control, Grenoble, France, September 2007. Lecture notes in control and information sciences 363. Berlin: Springer. xiii, 224 pGoogle Scholar
  12. Bichara D, Cozic N, Iggidr A (2014) On the estimation of sequestered infected erythrocytes in Plasmodium falciparum malaria patients. Math Biosci Eng 11(4):741–759. ISSN 1547-1063.  https://doi.org/10.3934/mbe.2014.11.741
  13. Bjørnstad ON, Finkenstädt BF, Grenfell BT (2002) Dynamics of measles epidemics: estimating scaling of transmission rates using a time series sir model. Ecol Monogr 72(2):169–184CrossRefGoogle Scholar
  14. Bliman P-A, D’Avila Barros B (2017) Interval observers for SIR epidemic models subject to uncertain seasonality. In: Positive systems, volume 471 of Lecture Notes Control Inf Sci, pp 31–39. Springer, ChamGoogle Scholar
  15. Bliman P-A, Efimov D, Ushirobira R (2018) A class of nonlinear adaptive observers for sir epidemic model. In Proceedings of European control conferenceGoogle Scholar
  16. Capasso V, Capasso V (1993) Mathematical structures of epidemic systems, vol 88. Springer, BerlinCrossRefzbMATHGoogle Scholar
  17. Cauchemez S, Ferguson NM (2008) Likelihood-based estimation of continuous-time epidemic models from time-series data: application to measles transmission in london. J R Soc Interface 5(25):885–897CrossRefGoogle Scholar
  18. Cauchemez S, Carrat F, Viboud C, Valleron A, Boelle P (2004) A bayesian mcmc approach to study transmission of influenza: application to household longitudinal data. Stat Med 23(22):3469–3487CrossRefGoogle Scholar
  19. Coppel W (1978) Dichotomies in Stability Theory, volume 629 of Lecture Notes in Mathematics. Springer-Verlag, BerlinGoogle Scholar
  20. De la Sen M, Ibeas A, Alonso-Quesada S (2011) Observer-based vaccination strategy for a true mass action SEIR epidemic model with potential estimation of all the populations. Discr Dyn Nat Soc, pages Art. ID 743067, 19Google Scholar
  21. Diaby M, Iggidr A, Sy M (2015) Observer design for a schistosomiasis model. Mathematical biosciences, 269:17–29. ISSN 0025-5564. http://www.sciencedirect.com/science/article/pii/S0025556415001625
  22. Diekmann O, Heesterbeek J (2000) Mathematical epidemiology of infectious diseases: model building, analysis and interpretation. Wiley series in mathematical and computational biology. Wiley, ChichesterGoogle Scholar
  23. Dietz K (1975) Transmission and control of arbovirus diseases. In: Ludwig E, Cooke KL (eds) Epidemiology. SIAM, New York, pp 104–121Google Scholar
  24. Drakeley C, Corran P, Coleman P, Tongren J, McDonald S, Carneiro I, Malima R, Lusingu J, Manjurano A, Nkya W et al (2005) Estimating medium-and long-term trends in malaria transmission by using serological markers of malaria exposure. Proc Nat Acad Sci USA 102(14):5108–5113CrossRefGoogle Scholar
  25. Esteva L, Vargas C (1998) Analysis of a dengue disease transmission model. Math Biosci 150(2):131–151CrossRefzbMATHGoogle Scholar
  26. Finkenstädt BF, Grenfell BT (2000) Time series modelling of childhood diseases: a dynamical systems approach. J Roy Stat Soc: Ser C (Appl Stat) 49(2):187–205MathSciNetCrossRefzbMATHGoogle Scholar
  27. Fisman D, Khoo E, Tuite A (2014) Early epidemic dynamics of the west african 2014 ebola outbreak:estimates derived with a simple two-parameter model. PLOS Curr.  https://doi.org/10.1371/currents.outbreaks.89c0d3783f36958d96ebbae97348d571
  28. Gauthier J, Hammouri H, Othman S (1992) A simple observer for nonlinear systems applications to bioreactors. IEEE Trans Autom Control 37(6):875–880MathSciNetCrossRefzbMATHGoogle Scholar
  29. Gérardin P, Guernier V, Perrau J, Fianu A, Le Roux K, Grivard P, Michault A, De Lamballerie X, Flahault A, Favier F (2008) Estimating chikungunya prevalence in la reunion island outbreak by serosurveys: two methods for two critical times of the epidemic. BMC Infect Dis 8(1):1CrossRefGoogle Scholar
  30. Guiro A, Iggidr A, Ngom D, Touré H (2009) On the stock estimation for some fishery systems. Rev Fish Biol Fish 19(3):313–327CrossRefGoogle Scholar
  31. Guo H, Li MY, Shuai Z (2006) Global stability of the endemic equilibrium of multigroup SIR epidemic models. Can Appl Math Q 14(3):259–284MathSciNetzbMATHGoogle Scholar
  32. Guo H, Li MY, Shuai Z (2008) A graph-theoretic approach to the method of global Lyapunov functions. In: Proceedings of the American Mathematical Society, 136(8):2793–2802, 08.  https://doi.org/10.2307/20535481. http://www.jstor.org/stable/20535481
  33. Hethcote HW (2000) The mathematics of infectious diseases. SIAM Rev 42(4):599–653MathSciNetCrossRefzbMATHGoogle Scholar
  34. Ibeas A, de la Sen M, Alonso-Quesada S, Zamani I (2015) Stability analysis and observer design for discrete-time SEIR epidemic models. Adv Differ Equ 122:21MathSciNetzbMATHGoogle Scholar
  35. Iggidr A (2004) Encyclopedia of Life Support Systems (EOLSS), chapter Controllability, Observability and Stability of Mathematical Models. UNESCO, Eolss Publishers, OxfordGoogle Scholar
  36. Iggidr A, Sallet G, Tsanou B (2012) Global stability analysis of a metapopulation SIS epidemic model. Math Popul Stud 19(3):115–129.  https://doi.org/10.1080/08898480.2012.693844 MathSciNetCrossRefzbMATHGoogle Scholar
  37. Iggidr A, Sallet G, Souza MO (2016) On the dynamics of a class of multi-group models for vector-borne diseases. J Math Anal Appl 441(2):723–743. ISSN 0022-247X.  https://doi.org/10.1016/j.jmaa.2016.04.003. http://www.sciencedirect.com/science/article/pii/S0022247X16300324
  38. Inaba H (1990) Threshold and stability results for an age-structured epidemic model. J Math Biol 28(4):411–434MathSciNetCrossRefzbMATHGoogle Scholar
  39. Jacquez JA, Greif P (1985) Numerical parameter identifiability and estimability: integrating identifiability, estimability, and optimal sampling design. Math Biosci 77(1):201–227CrossRefzbMATHGoogle Scholar
  40. Jacquez JA, et al. (1985) Compartmental analysis in biology and medicine. JSTORGoogle Scholar
  41. Joseph L, Gyorkos TW, Coupal L (1995) Bayesian estimation of disease prevalence and the parameters of diagnostic tests in the absence of a gold standard. Am J Epidemiol 141(3):263–272CrossRefGoogle Scholar
  42. Kågström B (1977) Bounds and perturbation bounds for the matrix exponential. BIT Numer Math 17(1):39–57.  https://doi.org/10.1007/BF01932398 MathSciNetCrossRefzbMATHGoogle Scholar
  43. Keeling MJ, Rohani P (2008) Modeling infectious diseases in humans and animals. Princeton University Press, PrincetonzbMATHGoogle Scholar
  44. Kermack WO, McKendrick AG (1927) A contribution to the mathematical theory of epidemics. In Proceedings of the Royal Society of London a: mathematical, physical and engineering sciences, volume 115, pp 700–721Google Scholar
  45. Kuniya T (2011) Global stability analysis with a discretization approach for an age-structured multigroup SIR epidemic model. Nonlinear Anal Real World Appl 12(5):2640–2655MathSciNetCrossRefzbMATHGoogle Scholar
  46. Lajmanovich A, Yorke J (1976) A deterministic model for gonorrhea in a nonhomogeneous population. Math Biosci 28:221–236MathSciNetCrossRefzbMATHGoogle Scholar
  47. Lloyd AL (2001) The dependence of viral parameter estimates on the assumed viral life cycle: limitations of studies of viral load data. Proc Roy Soc Lond B Biol Sci 268(1469):847–854CrossRefGoogle Scholar
  48. Luenberger DG (1971) An introduction to observers. IEEE Trans Autom Control AC 16(6):596–602. http://search.ebscohost.com/login.aspx?direct=true&db=inh&AN=334765&lang=fr&site=ehost-live
  49. Nishiura H (2006) Mathematical and statistical analyses of the spread of dengue. Dengue Bull 30:51–67Google Scholar
  50. Pongsumpun P, Tang I (2003) Transmission of Dengue hemorrhagic fever in an age structured population. Math Comput Model 37(9–10):949–961MathSciNetCrossRefzbMATHGoogle Scholar
  51. Reiner RC, Perkins TA, Barker CM, Niu T, Chaves LF, Ellis AM, George DB, Le Menach A, Pulliam JRC, Bisanzio D, Buckee C, Chiyaka C, Cummings DAT, Garcia AJ, Gatton ML, Gething PW, Hartley DM, Johnston G, Klein EY, Michael E, Lindsay SW, Lloyd AL, Pigott DM, Reisen WK, Ruktanonchai N, Singh BK, Tatem AJ, Kitron U, Hay SI, Scott TW, Smith DL (2013) A systematic review of mathematical models of mosquito-borne pathogen transmission: 1970–2010. J Roy Soc Interface.  https://doi.org/10.1098/rsif.2012.0921
  52. Rocha F, Aguiar M, Souza MO, Stollenwerk N (2013) Time-scale separation and center manifold analysis describing vector-borne disease dynamics. Int J Comput Math 90(10):2105–2125CrossRefzbMATHGoogle Scholar
  53. Ross R (1911) The prevention of malaria. John Murray, LondonGoogle Scholar
  54. Smith DL, Battle KE, Hay SI, Barker CM, Scott TW, McKenzie FE (2012) Ross, macdonald, and a theory for the dynamics and control of mosquito-transmitted pathogens. PLoS Pathog. https://doi.org/10.1371%2Fjournal.ppat.1002588Google Scholar
  55. Smith HL (1995) Monotone dynamical systems: an introduction to the theory of competitive and cooperative systems. Mathematical surveys and monographs. American Mathematical Society (AMS), ProvidenceGoogle Scholar
  56. Souza MO (2014) Multiscale analysis for a vector-borne epidemic model. J Math Biol 68(5):1269–1293MathSciNetCrossRefzbMATHGoogle Scholar
  57. Tami R, Boutat D, Zheng G (2013) Extended output depending normal form. Automatica 49(7):2192–2198.  https://doi.org/10.1016/j.automatica.2013.03.025. http://www.sciencedirect.com/science/article/pii/S0005109813001945
  58. Tami R, Boutat D, Zheng G, Kratz F (2014) Parameters and states estimation for dengue epidemic model. In 2014 European control conference (ECC), pp 528–533.  https://doi.org/10.1109/ECC.2014.6862173
  59. Toni T, Welch D, Strelkowa N, Ipsen A, Stumpf MP (2009) Approximate bayesian computation scheme for parameter inference and model selection in dynamical systems. J R Soc Interface 6(31):187–202CrossRefGoogle Scholar
  60. Towers S, Patterson-Lomba O, Castillo-Chavez C (2014) Temporal variations in the effective reproduction number of the 2014 West Africa Ebola outbreak. PLOS Curr OutbreaksGoogle Scholar
  61. Velasco-Hernández JX, García JA, Kirschner D (2002) Remarks on modeling host-viral dynamics and treatment. InCastillo-Chavez CEEA (Ed) Mathematical approaches for emerging and reemerging infectious diseases: an introduction. In Proceedings of a tutorial introduction to epidemiology and immunology, pp 287–308. Springer. IMA Vol Math Appl 125Google Scholar
  62. Wonham W (1979) Linear multivariable control: a geometric approach, 2nd edn. Springer, New YorkGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Université de Lorraine, CNRS, Inria, IECLMetzFrance
  2. 2.Instituto de Matemática e Estatística, Universidade Federal FluminenseNiteróiBrazil

Personalised recommendations