Advertisement

Type 1 Fimbriae and Motility Play a Pivotal Role During Interactions of Salmonella typhimurium with Acanthamoeba castellanii (T4 Genotype)

  • Talha Mannan
  • Muhammad Wasim Rafique
  • Muhammad Haroon Bhatti
  • Abdul Matin
  • Irfan AhmadEmail author
Article

Abstract

Amoebic bacterial interactions are the most ancient form of host pathogen interactions. Here, we investigate the fate of Salmonella typhimurium and Acanthamoeba castellanii T4 genotype upon mutual interactions in a nutrition free environment. The role of type 1 fimbriae and motility of S. typhimurium during interactions with A. castellanii has also been investigated. Deletion of genes encoding the type 1 fimbriae subunit FimA, type 1 fimbriae tip protein FimH, chemotaxis regulatory proteins CheA and CheY and major flagella subunits FliC and FljB was performed through homologous recombination. In vitro association, invasion and survival assays of S. typhimurium wild-type and mutant strains were performed upon co-incubation of bacteria with A. castellanii trophozoites in a nutrition free environment. The deletion gene encoding type 1 fimbriae subunit FimA reduced, whereas the deletion of genes encoding flagella subunits FliC and FljB of flagella enhanced the association capability of S. typhimurium with A. castellanii. Invasion of A. castellanii by Salmonella was significantly reduced upon the loss of type 1 fimbriae subunit FimA and type 1 fimbriae tip protein FimH. Co-incubation of S. typhimurium with A. castellanii in phosphate buffered saline medium stimulated the growth of S. typhimurium wild-type and mutant strains. Viable A. castellanii trophozoites count became significantly reduced upon co-incubation with S. typhimurium within 48 h. Type 1 fimbriae play a pivotal role in the adherence of S. typhimurium to the A. castellanii cell surface. Subsequently, this interaction provides S. typhimurium an advantage in growth.

Notes

Acknowledgements

We are grateful to Prof Ute Romling for reading the manuscript and providing tremendous feed back to improve its contents.

Funding

This work was funded by University of Health Sciences to support thesis work of TM, MWR and MHB.

Compliance with Ethical Standards

Conflict of interest

The authors declare that they have no conflict of interests.

Research Involving Human and Animal Participants

The study does not involve humans or animals.

Supplementary material

284_2019_1868_MOESM1_ESM.docx (1 mb)
Supplementary file1 (DOCX 981 kb)

References

  1. 1.
    Thomas V, Herrera-Rimann K, Blanc DS, Greub G (2006) Biodiversity of amoebae and amoeba-resisting bacteria in a hospital water network. Appl Environ Microbiol 72(4):2428–2438.  https://doi.org/10.1128/aem.72.4.2428-2438.2006 CrossRefPubMedPubMedCentralGoogle Scholar
  2. 2.
    Cateau E, Delafont V, Hechard Y, Rodier MH (2014) Free-living amoebae: what part do they play in healthcare-associated infections? J Hosp Infect 87(3):131–140.  https://doi.org/10.1016/j.jhin.2014.05.001 CrossRefPubMedGoogle Scholar
  3. 3.
    Scheid P (2014) Relevance of free-living amoebae as hosts for phylogenetically diverse microorganisms. Parasitol Res 113(7):2407–2414.  https://doi.org/10.1007/s00436-014-3932-7 CrossRefPubMedGoogle Scholar
  4. 4.
    Muchesa P, Leifels M, Jurzik L, Hoorzook KB, Barnard TG, Bartie C (2017) Coexistence of free-living amoebae and bacteria in selected South African hospital water distribution systems. Parasitol Res 116(1):155–165.  https://doi.org/10.1007/s00436-016-5271-3 CrossRefPubMedGoogle Scholar
  5. 5.
    Amann R, Springer N, Schonhuber W, Ludwig W, Schmid EN, Muller KD, Michel R (1997) Obligate intracellular bacterial parasites of acanthamoebae related to Chlamydia spp. Appl Environ Microbiol 63(1):115–121CrossRefGoogle Scholar
  6. 6.
    Steinert M, Birkness K, White E, Fields B, Quinn F (1998) Mycobacterium avium bacilli grow saprozoically in coculture with Acanthamoeba polyphaga and survive within cyst walls. Appl Environ Microbiol 64(6):2256–2261CrossRefGoogle Scholar
  7. 7.
    Haas A (2007) The phagosome: compartment with a license to kill. Traffic (Copenhagen, Denmark) 8(4):311–330.  https://doi.org/10.1111/j.1600-0854.2006.00531.x CrossRefGoogle Scholar
  8. 8.
    Cosson P, Lima WC (2014) Intracellular killing of bacteria: is Dictyostelium a model macrophage or an alien? Cell Microbiol 16(6):816–823CrossRefGoogle Scholar
  9. 9.
    Steinert M (2011) Pathogen-host interactions in Dictyostelium, Legionella, Mycobacterium and other pathogens. Semin Cell Dev Biol 22(1):70–76CrossRefGoogle Scholar
  10. 10.
    Tosetti N, Croxatto A, Greub G (2014) Amoebae as a tool to isolate new bacterial species, to discover new virulence factors and to study the host-pathogen interactions. Microb Pathog 77:125–130CrossRefGoogle Scholar
  11. 11.
    Gaze WH, Burroughs N, Gallagher MP, Wellington EM (2003) Interactions between Salmonella typhimurium and Acanthamoeba polyphaga, and observation of a new mode of intracellular growth within contractile vacuoles. Microb Ecol 46(3):358–369.  https://doi.org/10.1007/s00248-003-1001-3 CrossRefPubMedGoogle Scholar
  12. 12.
    Tezcan-Merdol D, Ljungstrom M, Winiecka-Krusnell J, Linder E, Engstrand L, Rhen M (2004) Uptake and replication of Salmonella enterica in Acanthamoeba rhysodes. Appl Environ Microbiol 70(6):3706–3714.  https://doi.org/10.1128/aem.70.6.3706-3714.2004 CrossRefPubMedPubMedCentralGoogle Scholar
  13. 13.
    Gill MA, Rafique MW, Manan T, Slaeem S, Romling U, Matin A, Ahmad I (2018) The cellulose synthase BcsA plays a role in interactions of Salmonella typhimurium with Acanthamoeba castellanii genotype T4. Parasitol Res 117(7):2283–2289.  https://doi.org/10.1007/s00436-018-5917-4 CrossRefPubMedGoogle Scholar
  14. 14.
    Van der Henst C, Vanhove AS, Drebes Dorr NC, Stutzmann S, Stoudmann C, Clerc S, Scrignari T, Maclachlan C, Knott G, Blokesch M (2018) Molecular insights into Vibrio cholerae's intra-amoebal host-pathogen interactions. Nat Commun 9(1):3460.  https://doi.org/10.1038/s41467-018-05976-x CrossRefPubMedPubMedCentralGoogle Scholar
  15. 15.
    Rude RA, Jackson GJ, Bier JW, Sawyer TK, Risty NG (1984) Survey of fresh vegetables for nematodes, amoebae, and Salmonella. J Assoc Off Anal Chem 67(3):613–615PubMedGoogle Scholar
  16. 16.
    Jensen VB, Harty JT, Jones BD (1998) Interactions of the invasive pathogens Salmonella typhimurium, Listeria monocytogenes, and Shigella flexneri with M cells and murine Peyer's patches. Infect Immun 66(8):3758–3766CrossRefGoogle Scholar
  17. 17.
    Jones BD, Ghori N, Falkow S (1994) Salmonella typhimurium initiates murine infection by penetrating and destroying the specialized epithelial M cells of the Peyer's patches. J Exp Med 180(1):15–23CrossRefGoogle Scholar
  18. 18.
    Martinez AJ, Visvesvara GS (1997) Free-living, amphizoic and opportunistic amebas. Brain Pathol (Zurich, Switzerland) 7(1):583–598CrossRefGoogle Scholar
  19. 19.
    Thamprasert K, Khunamornpong S, Morakote N (1993) Acanthamoeba infection of peptic ulcer. Ann Trop Med Parasitol 87(4):403–405CrossRefGoogle Scholar
  20. 20.
    Zaman V, Zaki M, Manzoor M (1999) Acanthamoeba in human faeces from Karachi. Ann Trop Med Parasitol 93(2):189–191CrossRefGoogle Scholar
  21. 21.
    King CH, Shotts EB Jr, Wooley RE, Porter KG (1988) Survival of coliforms and bacterial pathogens within protozoa during chlorination. Appl Environ Microbiol 54(12):3023–3033CrossRefGoogle Scholar
  22. 22.
    Kolenda R, Ugorski M, Grzymajlo K (2019) Everything you always wanted to know about Salmonella type 1 fimbriae, but were afraid to ask. Front Microbiol 10:1017.  https://doi.org/10.3389/fmicb.2019.01017 CrossRefPubMedPubMedCentralGoogle Scholar
  23. 23.
    Duguid JP, Campbell I (1969) Antigens of the type-1 fimbriae of salmonellae and other enterobacteria. J Med Microbiol 2(4):535–553.  https://doi.org/10.1099/00222615-2-4-535 CrossRefPubMedGoogle Scholar
  24. 24.
    Nuccio SP, Baumler AJ (2007) Evolution of the chaperone/usher assembly pathway: fimbrial classification goes Greek. Microbiol Mol Biol Rev 71(4):551–575.  https://doi.org/10.1128/mmbr.00014-07 CrossRefPubMedPubMedCentralGoogle Scholar
  25. 25.
    Althouse C, Patterson S, Fedorka-Cray P, Isaacson RE (2003) Type 1 fimbriae of Salmonella enterica serovar Typhimurium bind to enterocytes and contribute to colonization of swine in vivo. Infect Immun 71(11):6446–6452CrossRefGoogle Scholar
  26. 26.
    Ewen SW, Naughton PJ, Grant G, Sojka M, Allen-Vercoe E, Bardocz S, Thorns CJ, Pusztai A (1997) Salmonella enterica var Typhimurium and Salmonella enterica var Enteritidis express type 1 fimbriae in the rat in vivo. FEMS Immunol Med Microbiol 18(3):185–192CrossRefGoogle Scholar
  27. 27.
    Swenson DL, Kim KJ, Six EW, Clegg S (1994) The gene fimU affects expression of Salmonella typhimurium type 1 fimbriae and is related to the Escherichia coli tRNA gene argU. Mol Gen Genet 244(2):216–218CrossRefGoogle Scholar
  28. 28.
    Kisiela DI, Kramer JJ, Tchesnokova V, Aprikian P, Yarov-Yarovoy V, Clegg S, Sokurenko EV (2011) Allosteric catch bond properties of the FimH adhesin from Salmonella enterica serovar Typhimurium. J Biol Chem 286(44):38136–38147.  https://doi.org/10.1074/jbc.M111.237511 CrossRefPubMedPubMedCentralGoogle Scholar
  29. 29.
    Garate M, Cubillos I, Marchant J, Panjwani N (2005) Biochemical characterization and functional studies of Acanthamoeba mannose-binding protein. Infect Immun 73(9):5775–5781.  https://doi.org/10.1128/iai.73.9.5775-5781.2005 CrossRefPubMedPubMedCentralGoogle Scholar
  30. 30.
    Krell T, Lacal J, Munoz-Martinez F, Reyes-Darias JA, Cadirci BH, Garcia-Fontana C, Ramos JL (2011) Diversity at its best: bacterial taxis. Environ Microbiol 13(5):1115–1124.  https://doi.org/10.1111/j.1462-2920.2010.02383.x CrossRefPubMedGoogle Scholar
  31. 31.
    Park SY, Borbat PP, Gonzalez-Bonet G, Bhatnagar J, Pollard AM, Freed JH, Bilwes AM, Crane BR (2006) Reconstruction of the chemotaxis receptor-kinase assembly. Nat Struct Mol Biol 13(5):400–407.  https://doi.org/10.1038/nsmb1085 CrossRefPubMedGoogle Scholar
  32. 32.
    Erbse AH, Falke JJ (2009) The core signaling proteins of bacterial chemotaxis assemble to form an ultrastable complex. Biochemistry 48(29):6975–6987.  https://doi.org/10.1021/bi900641c CrossRefPubMedPubMedCentralGoogle Scholar
  33. 33.
    Borkovich KA, Kaplan N, Hess JF, Simon MI (1989) Transmembrane signal transduction in bacterial chemotaxis involves ligand-dependent activation of phosphate group transfer. Proc Natl Acad Sci USA 86(4):1208–1212CrossRefGoogle Scholar
  34. 34.
    Garrity LF, Ordal GW (1997) Activation of the CheA kinase by asparagine in Bacillus subtilis chemotaxis. Microbiology (Reading, England) 143(Pt 9):2945–2951.  https://doi.org/10.1099/00221287-143-9-2945 CrossRefGoogle Scholar
  35. 35.
    Sowa Y, Berry RM (2008) Bacterial flagellar motor. Q Rev Biophys 41(2):103–132.  https://doi.org/10.1017/s0033583508004691 CrossRefPubMedGoogle Scholar
  36. 36.
    Shoaib HM, Muazzam AG, Mir A, Jung S-Y, Matin A (2013) Evaluation of inhibitory potential of some selective methanolic plants extracts on biological characteristics of Acanthamoeba castellanii using human corneal epithelial cells in vitro. Parasitol Res 112(3):1179–1188CrossRefGoogle Scholar
  37. 37.
    Jung SY, Matin A, Kim KS, Khan NA (2007) The capsule plays an important role in Escherichia coli K1 interactions with Acanthamoeba. Int J Parasitol 37(3–4):417–423.  https://doi.org/10.1016/j.ijpara.2006.10.012 CrossRefPubMedGoogle Scholar
  38. 38.
    Datsenko KA, Wanner BL (2000) One-step inactivation of chromosomal genes in Escherichia coli K-12 using PCR products. Proc Natl Acad Sci USA 97(12):6640–6645CrossRefGoogle Scholar
  39. 39.
    Huws SA, Morley RJ, Jones MV, Brown MR, Smith AW (2008) Interactions of some common pathogenic bacteria with Acanthamoeba polyphaga. FEMS Microbiol Lett 282(2):258–265CrossRefGoogle Scholar
  40. 40.
    Snelling WJ, Moore JE, McKenna JP, Lecky DM, Dooley JS (2006) Bacterial-protozoa interactions; an update on the role these phenomena play towards human illness. Microbes Infect 8(2):578–587CrossRefGoogle Scholar
  41. 41.
    Pernthaler J (2005) Predation on prokaryotes in the water column and its ecological implications. Nat Rev Microbiol 3(7):537–546.  https://doi.org/10.1038/nrmicro1180 CrossRefPubMedPubMedCentralGoogle Scholar
  42. 42.
    Matz C, Kjelleberg S (2005) Off the hook–how bacteria survive protozoan grazing. Trends Microbiol 13(7):302–307.  https://doi.org/10.1016/j.tim.2005.05.009 CrossRefPubMedGoogle Scholar
  43. 43.
    Douesnard-Malo F, Daigle F (2011) Increased persistence of Salmonella enterica serovar Typhi in the presence of Acanthamoeba castellanii. Appl Environ Microbiol 77(21):7640–7646.  https://doi.org/10.1128/aem.00699-11 CrossRefPubMedPubMedCentralGoogle Scholar
  44. 44.
    Simm R, Ahmad I, Rhen M, Le Guyon S, Romling U (2014) Regulation of biofilm formation in Salmonella enterica serovar Typhimurium. Future Microbiol 9(11):1261–1282CrossRefGoogle Scholar
  45. 45.
    Malaviya R, Ross E, Jakschik BA, Abraham SN (1994) Mast cell degranulation induced by type 1 fimbriated Escherichia coli in mice. J Clin Invest 93(4):1645–1653CrossRefGoogle Scholar
  46. 46.
    Ofek I, Mirelman D, Sharon N (1977) Adherence of Escherichia coli to human mucosal cells mediated by mannose receptors. Nature 265(5595):623–625CrossRefGoogle Scholar
  47. 47.
    Sakarya S, Ertem GT, Oncu S, Kocak I, Erol N (2003) Escherichia coli bind to urinary bladder epithelium through nonspecific sialic acid mediated adherence. FEMS Immunol Med Microbiol 39(1):45–50CrossRefGoogle Scholar
  48. 48.
    Gerlach RG, Claudio N, Rohde M, Jackel D, Wagner C, Hensel M (2008) Cooperation of Salmonella pathogenicity islands 1 and 4 is required to breach epithelial barriers. Cell Microbiol 10(11):2364–2376CrossRefGoogle Scholar
  49. 49.
    Stone BJ, Abu Kwaik Y (1998) Expression of multiple pili by Legionella pneumophila: identification and characterization of a type IV pilin gene and its role in adherence to mammalian and protozoan cells. Infect Immun 66(4):1768–1775CrossRefGoogle Scholar
  50. 50.
    Ahmad I, Wigren E, Le Guyon S, Vekkeli S, Blanka A, El Mouali Y, Anwar N, Chuah ML, Lunsdorf H, Frank R, Rhen M, Liang ZX, Lindqvist Y, Romling U (2013) The EAL-like protein STM1697 regulates virulence phenotypes, motility and biofilm formation in Salmonella typhimurium. Mol Microbiol 90(6):1216–1232CrossRefGoogle Scholar
  51. 51.
    Galan JE (2001) Salmonella interactions with host cells: type III secretion at work. Annu Rev Cell Dev Biol 17:53–86.  https://doi.org/10.1146/annurev.cellbio.17.1.53 CrossRefPubMedGoogle Scholar
  52. 52.
    Misselwitz B, Kreibich SK, Rout S, Stecher B, Periaswamy B, Hardt WD (2011) Salmonella enterica serovar Typhimurium binds to HeLa cells via Fim-mediated reversible adhesion and irreversible type three secretion system 1-mediated docking. Infect Immun 79(1):330–341CrossRefGoogle Scholar
  53. 53.
    Olsen JE, Hoegh-Andersen KH, Casadesus J, Thomsen LE (2012) The importance of motility and chemotaxis for extra-animal survival of Salmonella enterica serovar Typhimurium and Dublin. J Appl Microbiol 113(3):560–568.  https://doi.org/10.1111/j.1365-2672.2012.05363.x CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2020

Authors and Affiliations

  1. 1.Institute of Biomedical and Allied Health SciencesUniversity of Health Sciences LahoreLahorePakistan
  2. 2.Department of Medical Laboratory Sciences, College of Applied Medical SciencesMajmaah UniversityMajmaahSaudi Arabia
  3. 3.Department of Medical Laboratory TechnologyUniversity of HaripurHaripurPakistan

Personalised recommendations