Advertisement

Aureimonas leprariae sp. nov., Isolated from a Lepraria sp. Lichen

  • Kun Zhang
  • Long-Qian Jiang
  • Li-Song Wang
  • De-Feng An
  • Lei Lang
  • Gui-Ding Li
  • Xin-Yu Wang
  • Song-Biao Shi
  • Qin-Yuan Li
  • Cheng-Lin Jiang
  • Yi JiangEmail author
Article
  • 23 Downloads

Abstract

A Gram-negative, motile, aerobic and coccoid rod-shaped bacterium, designated strain YIM132180T, was isolated from a Lepraria sp. lichen collected from Pu’er, Yunnan Province, China. The strain grew at 15–35 °C (optimum, 25–28 °C), at 0–2% (w/v) NaCl (optimum, 0–1%) and at pH 6.0–9.0 (optimum, pH 7.0). The 16S rRNA gene sequence showed that strain YIM132180T had highest similarity (96.4%) with Aureimonas endophytica 2T4P-2-4T, followed by Aureimonas ureilytica NBRC 106430T (95.7%) and Aureimonas rubiginis CC-CFT034T (95.6%). Phylogenetic analysis showed that the strain grouped with species of the genus Aureimonas. The genomic sequence was 4,779,519 bp and contained 4584 coding sequences (CDSs), 54 RNA genes, 3 complete rRNA genes and 47 tRNA genes. The major fatty acids (>10%) of strain YIM132180T were C18:1ω7c, C-16:0 and C19:0 cyclo ω8c. The predominant menaquinone was ubiquinone 10 (Q-10). The polar lipid profile comprised diphosphatidylglycerol, phosphatidylcholine, phosphatidylmethylethanolamine, phosphatidylethanolamine, phosphatidylglycerol, unidentified phospholipid, amino lipid, lipid and most importantly sulfoquinovosyldiacylglycerol (SQDG). Based on the draft genome sequence, the G +C content of strain YIM132180T was 68.4 mol%. The results of the polyphasic taxonomic study, including phenotypic, chemotaxonomic, and phylogenetic analyses, showed that strain YIM132180T represents a novel species of the genus Aureimonas, for which the name Aureimonas leprariae sp. nov. is proposed. The type strain is YIM 132180T (=KCTC 72462T = CGMCC 1.17389T).

Notes

Acknowledgements

This research was funded by National Natural Science Foundation of China (31460005).

Author Contributions

KZ: performed the experiments and wrote the manuscript; L-QJ and G-DL: analysed the data; S-BS and Q-YL: performed the study; D-FA and LL: analysed the data; X-YW: collected the lichen samples; L-SW: identified the lichen samples; YJ: guided the experiments and revised the manuscript; C-LJ: designed the study.

Compliance with Ethical Standards

Conflict of interest

The authors declare that they have no conflict of interest.

Supplementary material

284_2019_1826_MOESM1_ESM.doc (14.3 mb)
Supplementary file1 (DOC 14648 kb)

References

  1. 1.
    Denner EB, Smith GW, Busse HJ, Schumann P, Narzt T, Polson SW (2003) Aurantimonas coralicida gen. nov., sp. nov., the causative agent of white plague type II on caribbean scleractinian corals. Int J Syst Evol Microbiol 53:1115–1122CrossRefGoogle Scholar
  2. 2.
    Cho JC, Giovannoni SJ (2003) Fulvimarina pelagi gen. nov., sp. nov., a marine bacterium that forms a deep evolutionary lineage of descent in the order “Rhizobiales”. Int J Syst Evol Microbiol 53:1853–1859CrossRefGoogle Scholar
  3. 3.
    Rivas R, Sanchez-Márquez S, Mateos PF, Martínez-Molina E, Velázquez E (2005) Martelella mediterranea gen. nov., sp. nov., a novel alpha-proteobacterium isolated from a subterranean saline lake. Int J Syst Evol Microbiol 55:955–959CrossRefGoogle Scholar
  4. 4.
    Rathsack K, Reitner J, Stackebrandt E, Tindall BJ et al (2011) Reclassification of Aurantimonas altamirensis (Jurado, 2006), Aurantimonas ureilytica (Weon et al. 2007) and Aurantimonas frigidaquae (Kim et al. 2008) as members of a new genus, Aureimonas gen. nov., as Aureimonas altamirensis gen. nov., comb. nov., Aureimonas ureilytica comb. nov. and Aureimonas frigidaquae comb. nov., and emended descriptions of the genera Aurantimonas and Fulvimarina. Int J Syst Evol Microbiol 61:2722–2728CrossRefGoogle Scholar
  5. 5.
    Liang J, Liu J, Zhang XH (2015) Jiella aquimaris gen. nov., sp. nov., isolated from offshore surface seawater. Int J Syst Evol Microbiol 65:1127–1132CrossRefGoogle Scholar
  6. 6.
    Li FN, Liao S, Guo M, Tuo L, Yan X, Li W, Jin T, Lee SM, Sun CH (2018) Mangrovicella endophytica gen. nov., sp. nov., a new member of the family Aurantimonadaceae isolated from Aegiceras corniculatum. Int J Syst Evol Microbiol 68:2838–2845CrossRefGoogle Scholar
  7. 7.
    Madhaiyan M, Hu CJ, Jegan Roy J, Kim SJ, Weon HY et al (2013) Aureimonas jatrophae sp. nov. and Aureimonas phyllosphaerae sp. nov., leaf-associated bacteria isolated from Jatropha curcas L. Int J Syst Evol Microbiol 63:1702–1708CrossRefGoogle Scholar
  8. 8.
    Lin SY, Hameed A, Liu YC, Hsu YH, Lai WA et al (2013) Aureimonas ferruginea sp. nov. and Aureimonas rubiginis sp. nov., two siderophore-producing bacteria isolated from rusty iron plates. Int J Syst Evol Microbiol 63:2430–2435CrossRefGoogle Scholar
  9. 9.
    Cho Y, Lee I, Yang YY, Baek K, Yoon SJ et al (2015) Aureimonas glaciistagni sp. nov., isolated from a melt pond on Arctic sea ice. Int J Syst Evol Microbiol 65:3564–3569CrossRefGoogle Scholar
  10. 10.
    Aydogan EL, Busse HJ, Moser G, Müller C, Kämpfer P et al (2016) Aureimonas galii sp. nov. and Aureimonas pseudogalii sp. nov. isolated from the phyllosphere of Galium album. Int J Syst Evol Microbiol 66:3345–3354CrossRefGoogle Scholar
  11. 11.
    Guo B, Liu Y, Gu Z, Shen L, Liu K et al (2017) Aureimonas glaciei sp. nov., isolated from an ice core. Int J Syst Evol Microbiol 67:485–488CrossRefGoogle Scholar
  12. 12.
    Li FN, Tuo L, Pan Z, Guo M, Lee SMY, Chen L, Hu L, Sun CH (2017) Aureimonas endophytica sp. nov., a novel endophytic bacterium isolated from Aegiceras corniculatum. Int J Syst Evol Microbiol 67:2934–2940CrossRefGoogle Scholar
  13. 13.
    Li Y, Xu G, Lin C, Wang X, Piao CG (2018) Aureimonas populi sp. nov., isolated from poplar tree bark. Int J Syst Evol Microbiol 68:487–491CrossRefGoogle Scholar
  14. 14.
    Liu CB, Jiang Y, Wang XY, Chen DB, Chen X, Wang LS, Han L, Huang XS, Jiang CL (2017) Diversity, antimicrobial activity, and biosynthetic potential of cultivable actinomycetes with lichen symbiosis. Microb Ecol 74:570–584CrossRefGoogle Scholar
  15. 15.
    Hayakawa M, Nonomura H (1987) Humic acid-vitamin agar, a new medium for the selective isolation of soil actinomycetes. J Ferment Technol 65:501–509CrossRefGoogle Scholar
  16. 16.
    Shirling EB, Gottlieb D (1966) Methods for characterization of Streptomyces species. Int J Syst Bacteriol 16:313–340CrossRefGoogle Scholar
  17. 17.
    Leifson E (1960) Atlas of bacterial flagellation. Academic, New YorkCrossRefGoogle Scholar
  18. 18.
    Murray RGE, Doetsch RN, Robinow CF (1994) Determinative and cytological light microscopy. In: Methods for general and molecular bacteriology. American Society for Microbiology, Washington, DCGoogle Scholar
  19. 19.
    Choi JH, Seok JH, Cha JH, Cha CJ (2014) Lysobacter panacisoli sp. nov., isolated from ginseng soil. Int J Syst Evol Microbiol 64:2193–2197CrossRefGoogle Scholar
  20. 20.
    Xu P, Li WJ, Tang SK, Zhang YQ, Chen GZ, Chen HH, Xu LH, Jiang CL (2005) Naxibacter alkalitolerans gen. nov., sp. nov., a novel member of the family ‘Oxalobacteraceae’ isolated from China. Int J Syst Evol Microbiol 55:1149–1153CrossRefGoogle Scholar
  21. 21.
    Tindall BJ, Sikorski J, Smibert RA, Krieg NR (2007) Phenotypic characterization and the principles of comparative systematics. In: Reddy CA, Beveridge TJ, Breznak JA, Marzluf GA, Schmidt TM et al (eds) Methods for general and molecular microbiology. American Society for Microbiology, Washington, DCGoogle Scholar
  22. 22.
    Li WJ, Xu P, Schumann P, Zhang YQ, Pukall R, Xu LH, Stackebrandt E, Jiang CL (2007) Georgenia ruanii sp. nov., a novel actinobacterium isolated from forest soil in Yunnan (China), and emended description of the genus Georgenia. Int J Syst Evol Microbiol 57:1424–1428CrossRefGoogle Scholar
  23. 23.
    Kim OS, Cho YJ, Lee K, Yoon SH, Kim M et al (2012) Introducing EzTaxon-e: a prokaryotic 16S rRNA gene sequence database with phylotypes that represent uncultured species. Int J Syst Evol Microbiol 62:716–721CrossRefGoogle Scholar
  24. 24.
    Thompson JD, Gibson TJ, Plewniak F, Jeanmougin F, Higgins DG (1997) The CLUSTAL_X windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools. Nucleic Acids Res 25:4876–4882CrossRefGoogle Scholar
  25. 25.
    Saitou N, Nei M (1987) The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol 4:406–425PubMedPubMedCentralGoogle Scholar
  26. 26.
    Felsenstein J (1981) Evolutionary trees from DNA sequences: a maximum likelihood approach. J Mol Evol 17:368–376CrossRefGoogle Scholar
  27. 27.
    Fitch WM (1971) Toward defining the course of evolution: minimum change for a specific tree topology. Syst Zool 20:406–416CrossRefGoogle Scholar
  28. 28.
    Kumar S, Stecher G, Tamura K (2016) MEGA7: molecular evolutionary genetics analysis version 7.0 for bigger datasets. Mol Biol Evol 33:1870–1874CrossRefGoogle Scholar
  29. 29.
    Li R, Li Y, Kristiansen K, Wang J (2008) SOAP: short oligonucleotide alignment program. Bioinformatics 24:713–714CrossRefGoogle Scholar
  30. 30.
    Li D, Liu CM, Luo R, Sadakane K, Lam TW (2015) MEGAHIT: an ultra-fast single-node solution for large and complex metagenomics assembly via succinct de Bruijn graph. Bioinformatics 31:1674–1676CrossRefGoogle Scholar
  31. 31.
    Sasser M (1990) Identification of bacteria by gas chromatography of cellular fatty acids, Technical Note 101. MIDI, NewarkGoogle Scholar
  32. 32.
    Kämpfer P, Kroppenstedt RM (1996) Numerical analysis of fatty acid patterns of coryneform bacteria and related taxa. Can J Microbiol 42:989–1005CrossRefGoogle Scholar
  33. 33.
    Collins MD, Pirouz T, Goodfellow M, Minnikin DE (1977) Distribution of menaquinones in actinomycetes and corynebacteria. J Gen Microbiol 100:221–230CrossRefGoogle Scholar
  34. 34.
    Kroppenstedt RM (1982) Separation of bacterial menaquinones by HPLC using reverse phase (RP18) and a silver loaded ion exchanger as stationary phases. J Liq Chromatogr 5:2359–2367CrossRefGoogle Scholar
  35. 35.
    Minnikin DE, O’Donnell AG, Goodfellow M, Alderson G, Athalye M et al (1984) An integrated procedure for the extraction of bacterial isoprenoid quinones and polar lipids. J Microbiol Methods 2:233–241CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  • Kun Zhang
    • 1
  • Long-Qian Jiang
    • 1
  • Li-Song Wang
    • 2
  • De-Feng An
    • 1
  • Lei Lang
    • 1
  • Gui-Ding Li
    • 1
    • 3
  • Xin-Yu Wang
    • 2
  • Song-Biao Shi
    • 4
  • Qin-Yuan Li
    • 1
  • Cheng-Lin Jiang
    • 1
  • Yi Jiang
    • 1
    Email author
  1. 1.Yunnan Institute of Microbiology, Key Laboratory for Conservation and Utilization of Bio-Resource, School of Life SciencesYunnan UniversityKunmingPeople’s Republic of China
  2. 2.Key Lab for Plant Diversity and Biogeography of East Asia, Kunming Institute of BotanyChinese Academy of SciencesKunmingPeople’s Republic of China
  3. 3.Institute of Microbial PharmaceuticalsNortheastern UniversityShenyangPeople’s Republic of China
  4. 4.School of Chemistry and Chemical Engineering, Guangxi Key Laboratory of Chemistry and Engineering of Forest ProductsGuangxi University for NationalitiesNanningPeople’s Republic of China

Personalised recommendations