Characteristics and Complete Genome Analysis of Bacillus asahii OM18, a Bacterium in Relation to Soil Fertility in Alkaline Soils Under Long-Term Organic Manure Amendment

  • Huayun Jiang
  • Youzhi Feng
  • Fei Zhao
  • Xiangui LinEmail author


Bacillus asahii strain OM18, a bacterium in relation to soil fertility, was isolated from alkaline soils under long-term organic manure application in the North China Plain. B. asahii species play a pivotal role in the promotion of both crop yield and soil fertility via accelerating carbon and phosphorus cycling. However, little is known about the characteristics of B. asahii and its underlying molecular mechanism involved in soil nutrient cycling as well as its potential in promoting crop growth. To this end, we report the characteristics and complete genome analysis of strain OM18, which is relevant to promoting plant growth in phosphorus-deficient alkaline soils. Our results provide a glimpse into the metabolic function of B. asahii OM18.



This work was supported by the National Natural Science Foundation of China (Project Nos. 41771294 and 41430859), the National Key R&D Program (2016YFD0200306), and the CAS Strategic Priority Research Program Grant (XDB15020103). The authors thank all anonymous reviewers for their valuable comments on the revision of this manuscript.

Compliance with Ethical Standards

Conflict of interest

The authors declare no competing financial interest.

Supplementary material

284_2019_1766_MOESM1_ESM.pdf (2.2 mb)
Supplementary file1 (PDF 2228 kb)
284_2019_1766_MOESM2_ESM.xlsx (214 kb)
Supplementary file2 (XLSX 213 kb)
284_2019_1766_MOESM3_ESM.pdf (323 kb)
Supplementary file3 (PDF 322 kb)


  1. 1.
    Al-Bader D, Eliyas M, Rayan R, Radwan S (2012) Air-dust-borne associations of phototrophic and hydrocarbon-utilizing microorganisms: promising consortia in volatile hydrocarbon bioremediation. Environ Sci Pollut Res 19(9):3997–4005CrossRefGoogle Scholar
  2. 2.
    Al-Bader D, Eliyas M, Rayan R, Radwan S (2013) Subsurface associations of Acaryochloris-related picocyanobacteria with oil-utilizing bacteria in the Arabian Gulf water body: promising consortia in oil sediment bioremediation. Microb Ecol 65(3):555–565CrossRefGoogle Scholar
  3. 3.
    Aziz RK, Bartels D, Best AA, DeJongh M, Disz T, Edwards RA, Formsma K, Gerdes S, Glass EM, Kubal M, Meyer F, Olsen GJ, Olson R, Osterman AL, Overbeek RA, McNeil LK, Paarmann D, Paczian T, Parrello B, Pusch GD, Reich C, Stevens R, Vassieva O, Vonstein V, Wilke A, Zagnitko O (2008) The RAST server: rapid annotations using subsystems technology. BMC Genomics 9:75CrossRefGoogle Scholar
  4. 4.
    Ballal A, Basu B, Apte SK (2007) The Kdp-ATPase system and its regulation. J Biosci 32(3):559–568CrossRefGoogle Scholar
  5. 5.
    Bishnoi U (2015) Chapter four—PGPR interaction: an ecofriendly approach promoting the sustainable agriculture system. In: Bais H, Sherrier J (eds) Plant microbe interactions. Advances in botanical research, vol 75. Academic Press, London, pp 81–113CrossRefGoogle Scholar
  6. 6.
    Buchanan RE, Gibbons NE (1974) Bergey’s manual of determinative bacteriology, 8th edn. Williams & Wilkins, BaltimoreGoogle Scholar
  7. 7.
    Chu HY, Lin XG, Fujii T, Morimoto S, Yagi K, Hu JL, Zhang JB (2007) Soil microbial biomass, dehydrogenase activity, bacterial community structure in response to long-term fertilizer management. Soil Biol Biochem 39(11):2971–2976CrossRefGoogle Scholar
  8. 8.
    Darling ACE, Mau B, Blattner FR, Perna NT (2004) Mauve: multiple alignment of conserved genomic sequence with rearrangements. Genome Res 14(7):1394–1403CrossRefGoogle Scholar
  9. 9.
    Eid J, Fehr A, Gray J, Luong K, Lyle J, Otto G, Peluso P, Rank D, Baybayan P, Bettman B, Bibillo A, Bjornson K, Chaudhuri B, Christians F, Cicero R, Clark S, Dalal R, Dewinter A, Dixon J, Foquet M, Gaertner A, Hardenbol P, Heiner C, Hester K, Holden D, Kearns G, Kong X, Kuse R, Lacroix Y, Lin S, Lundquist P, Ma C, Marks P, Maxham M, Murphy D, Park I, Pham T, Phillips M, Roy J, Sebra R, Shen G, Sorenson J, Tomaney A, Travers K, Trulson M, Vieceli J, Wegener J, Wu D, Yang A, Zaccarin D, Zhao P, Zhong F, Korlach J, Turner S (2009) Real-time DNA sequencing from single polymerase molecules. Science 323(5910):133–138CrossRefGoogle Scholar
  10. 10.
    Faino L, Seidl MF, Datema E, van den Berg GCM, Janssen A, Wittenberg AHJ, Thomma BPHJ (2015) Single-molecule real-time sequencing combined with optical mapping yields completely finished fungal genome. mBio 6(4):e00936-15CrossRefGoogle Scholar
  11. 11.
    Falkowski PG, Fenchel T, Delong EF (2008) The microbial engines that drive Earth's biogeochemical cycles. Science 320(5879):1034–1039CrossRefGoogle Scholar
  12. 12.
    Felsenstein J (1985) Confidence limits on phylogenies: an approach using the bootstrap. Evolution 39(4):783–791CrossRefGoogle Scholar
  13. 13.
    Feng Y, Chen R, Hu J, Zhao F, Wang J, Chu H, Zhang J, Dolfing J, Lin X (2015) Bacillus asahii comes to the fore in organic manure fertilized alkaline soils. Soil Biol Biochem 81:186–194CrossRefGoogle Scholar
  14. 14.
    Ge Y, Zhang JB, Zhang LM, Yang M, He JZ (2008) Long-term fertilization regimes affect bacterial community structure and diversity of an agricultural soil in Northern China. J Soils Sediments 8(1):43–50CrossRefGoogle Scholar
  15. 15.
    Ha SM, Kim CK, Roh J, Byun JH, Yang SJ, Choi SB, Chun J, Yong D (2019) Application of the whole genome-based bacterial identification system, TrueBac ID, using clinical isolates that were not identified with three matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF MS) systems. Ann Lab Med 39(6):530–536CrossRefGoogle Scholar
  16. 16.
    Hall TA (1999) BioEdit: a user-friendly biological sequence alignment editor and analysis program for Windows 95/98/NT. Nucleic Acids Symp Ser 41:95–98Google Scholar
  17. 17.
    Heermann R, Jung K (2010) The complexity of the ‘simple’ two-component system KdpD/KdpE in Escherichia coli. FEMS Microbiol Lett 304(2):97–106CrossRefGoogle Scholar
  18. 18.
    Hsieh Y-J, Wanner BL (2010) Global regulation by the seven-component Pi signaling system. Curr Opin Microbiol 13(2):198–203CrossRefGoogle Scholar
  19. 19.
    Jing ZW, Chen RR, Wei SP, Feng YZ, Zhang JB, Lin XG (2017) Response and feedback of C mineralization to P availability driven by soil microorganisms. Soil Biol Biochem 105:111–120CrossRefGoogle Scholar
  20. 20.
    Kanehisa M, Goto S (2000) KEGG: Kyoto encyclopedia of genes and genomes. Nucleic Acids Res 28(1):27–30CrossRefGoogle Scholar
  21. 21.
    Koren S, Schatz MC, Walenz BP, Martin J, Howard JT, Ganapathy G, Wang Z, Rasko DA, McCombie WR, Jarvis ED, Phillippy AM (2012) Hybrid error correction and de novo assembly of single-molecule sequencing reads. Nat Biotechnol 30(7):693–700CrossRefGoogle Scholar
  22. 22.
    Lagesen K, Hallin P, Rødland EA, Stærfeldt H-H, Rognes T, Ussery DW (2007) RNAmmer: consistent and rapid annotation of ribosomal RNA genes. Nucleic Acids Res 35(9):3100–3108CrossRefGoogle Scholar
  23. 23.
    Lee I, Kim YO, Park SC, Chun J (2016) OrthoANI: an improved algorithm and software for calculating average nucleotide identity. Int J Syst Evol Microbiol 66:1100–1103CrossRefGoogle Scholar
  24. 24.
    Lin X, Feng Y (2016) Research progresses of farmland microorganisms in fluvo-aquic soil of China. Zhongguo Shengtai Nongye Xuebao 24(4):416–434Google Scholar
  25. 25.
    Lowe TM, Eddy SR (1997) tRNAscan-SE: a program for improved detection of transfer RNA genes in genomic sequence. Nucleic Acids Res 25(5):955–964CrossRefGoogle Scholar
  26. 26.
    Ma B, Zhao K, Lv X, Su W, Dai Z, Gilbert JA, Brookes PC, Faust K, Xu J (2018) Genetic correlation network prediction of forest soil microbial functional organization. ISME J 12(10):2492–2505CrossRefGoogle Scholar
  27. 27.
    Meng L, Ding WX, Cai ZC (2005) Long-term application of organic manure and nitrogen fertilizer on N2O emissions, soil quality and crop production in a sandy loam soil. Soil Biol Biochem 37(11):2037–2045CrossRefGoogle Scholar
  28. 28.
    Nakano K, Shiroma A, Shimoji M, Tamotsu H, Ashimine N, Ohki S, Shinzato M, Minami M, Nakanishi T, Teruya K, Satou K, Hirano T (2017) Advantages of genome sequencing by long-read sequencer using SMRT technology in medical area. Hum Cell 30(3):149–161CrossRefGoogle Scholar
  29. 29.
    Overbeek R, Olson R, Pusch GD, Olsen GJ, Davis JJ, Disz T, Edwards RA, Gerdes S, Parrello B, Shukla M, Vonstein V, Wattam AR, Xia F, Stevens R (2014) The SEED and the rapid annotation of microbial genomes using subsystems technology (RAST). Nucleic Acids Res 42:D206–D214CrossRefGoogle Scholar
  30. 30.
    Qin S, Gu Y, Zhu Z (1998) A preliminary report on long-term stationary experiment on fertility evolution of fluvo-aquic soil and the effect of fertilization. Turang Xuebao 35(3):367–375Google Scholar
  31. 31.
    Saitou N, Nei M (1987) The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol 4:406–425Google Scholar
  32. 32.
    Scholz R, Molohon KJ, Nachtigall J, Vater J, Markley AL, Sussmuth RD, Mitchell DA, Borriss R (2011) Plantazolicin, a novel microcin B17/streptolysin S-like natural product from Bacillus amyloliquefaciens FZB42. J Bacteriol 193(1):215–224CrossRefGoogle Scholar
  33. 33.
    Seldin L (2011) Paenibacillus, nitrogen fixation and soil fertility. In: Logan N, Vos P (eds) Endospore-forming soil bacteria. Soil biology, vol 27. Springer, Berlin, pp 287–307CrossRefGoogle Scholar
  34. 34.
    Sun ZB, Yuan XF, Zhang H, Wu LF, Liang C, Feng YJ (2013) Isolation, screening and identification of antagonistic downy mildew endophytic bacteria from cucumber. Eur J Plant Pathol 137(4):847–857CrossRefGoogle Scholar
  35. 35.
    Tamura K, Peterson D, Peterson N, Stecher G, Nei M, Kumar S (2011) MEGA5: molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods. Mol Biol Evol 28(10):2731–2739CrossRefGoogle Scholar
  36. 36.
    Thompson JD, Gibson TJ, Plewniak F, Jeanmougin F, Higgins DG (1997) The CLUSTAL_X windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools. Nucleic Acids Res 25(24):4876–4882CrossRefGoogle Scholar
  37. 37.
    Varghese NJ, Mukherjee S, Ivanova N, Konstantinidis KT, Mavrommatis K, Kyrpides NC, Pati A (2015) Microbial species delineation using whole genome sequences. Nucleic Acids Res 43(14):6761–6771CrossRefGoogle Scholar
  38. 38.
    Wei Q, Xiang B, Wang H, Luo J, Jiang G, Yin Y, Cui L, Ma Q, Yang S (2015) Extraction of genomic DNA from Escherichia coli. In: Wei Q (ed) Laboratory manual for molecular biology, 3rd edn. Higher Education Press, Beijing, pp 126–128Google Scholar
  39. 39.
    Yadav S, Kaushik R, Saxena AK, Arora DK (2011) Genetic and functional diversity of Bacillus strains in the soils long-term irrigated with paper and pulp mill effluent. J Gen Appl Microbiol 57(4):183–195CrossRefGoogle Scholar
  40. 40.
    Yoon SH, Ha SM, Lim J, Kwon S, Chun J (2017) A large-scale evaluation of algorithms to calculate average nucleotide identity. Antonie Van Leeuwenhoek 110:1281–1286CrossRefGoogle Scholar
  41. 41.
    Yumoto I, Hirota K, Yamaga S, Nodasaka Y, Kawasaki T, Matsuyama H, Nakajima K (2004) Bacillus asahii sp nov., a novel bacterium isolated from soil with the ability to deodorize the bad smell generated from short-chain fatty acids. Int J Syst Evol Microbiol 54:1997–2001CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  • Huayun Jiang
    • 1
    • 2
    • 3
  • Youzhi Feng
    • 1
  • Fei Zhao
    • 4
  • Xiangui Lin
    • 1
    Email author
  1. 1.State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil ScienceChinese Academy of SciencesNanjingPeople’s Republic of China
  2. 2.University of Chinese Academy of SciencesBeijingPeople’s Republic of China
  3. 3.School of Life SciencesNanjing Normal UniversityNanjingPeople’s Republic of China
  4. 4.Nanjing Institute for Comprehensive Utilization of Wild PlantsChina CO-OPNanjingPeople’s Republic of China

Personalised recommendations