Advertisement

Glycine Betaine Effect on Dormancy in Deinococcus sp. UDEC-P1 and Psychrobacter sp. UDEC-A5 Exposed to Hyperosmotic Stress

  • Karina Gonzalez
  • Boris Parra
  • Carlos T. Smith
  • Miguel MartinezEmail author
Article
  • 23 Downloads

Abstract

Bacteria under stress increase the proportion of dormant cells to ensure their survival. Cold and osmotic stress are similar, because in both the availability of water is reduced. Glycine betaine (GB) is one of the most common osmoprotectants in bacteria and possesses cryoprotectant properties. Our aim was to determine whether GB modifies the proportion of dormant Deinococcus sp. UDEC-P1 and Psychrobacter sp. UDEC-A5 cells exposed to osmotic stress. Both bacterial strains were incubated in the presence of up to 1 M NaCl with or without GB. Active and dormant cells were evaluated by both spectrophotometric and flow cytometry analysis. Without GB, Deinococcus sp. UDEC-P1 grew in the presence of 0.05 M NaCl, but with 5 mM GB grew at 0.1 M NaCl. Psychrobacter sp. UDEC-A5 grew in the presence of up to 0.25 M NaCl, but with 5 mM GB grew at 0.5 M NaCl. Under osmotic stress, the proportion of dormant cells of Deinococcus sp. UDEC-P1 and Psychrobacter sp. UDEC-A5 increased significantly (about eightfold and fivefold, respectively). The addition of GB (5 mM) exerted a different effect on the two strains, since it avoided the entrance into the dormancy of Psychrobacter sp. UDEC-A5 cells, but not of Deinococcus sp. UDEC-P1 cells. Our results suggest that the effect of GB on bacterial metabolism is strain dependent. For bacteria in which GB avoids dormancy, such as Psychrobacter sp. UDEC-A5, it could be a “double-edged sword” by reducing the “seed bank” available to recover the active population when favorable conditions return.

Notes

Acknowledgements

This study was supported by grant Enlace VRID 214.036.041-1.0. The authors would like to thank Miss Ruth Contreras for her technical support and to the “Centro de Microscopía Avanzada” (CMA BioBio, University of Concepcion, Chile) for the cytometry analyses.

Compliance with Ethical Standards

Conflict of interest

The authors declare that they have no conflict of interest.

References

  1. 1.
    Lennon JT, Jones SE (2011) Microbial seed banks: the ecological and evolutionary implications of dormancy. Nat Rev Microbiol 9:119–130CrossRefGoogle Scholar
  2. 2.
    Wood JM (2011) Bacterial osmoregulation: a paradigm for the study of cellular homeostasis. Annu Rev Microbiol 65:215–238CrossRefGoogle Scholar
  3. 3.
    Kandror O, DeLeon A, Goldberg AL (2002) Trehalose synthesis is induced upon exposure of Escherichia coli to cold and is essential for viability at low temperatures. Proc Natl Acad Sci 99:9727–9732CrossRefGoogle Scholar
  4. 4.
    Kempf B, Bremer E (1998) Uptake and synthesis of compatible solutes as microbial stress responses to high-osmolality environments. Arch Microbiol 170:319–330CrossRefGoogle Scholar
  5. 5.
    Wood JM (2015) Bacterial responses to osmotic challenges. J Gen Physiol 145:381–388CrossRefGoogle Scholar
  6. 6.
    Cleland D, Krader P, McCree C, Tang J, Emerson D (2004) Glycine betaine as a cryoprotectant for prokaryotes. J Microbiol Meth 58:31–38CrossRefGoogle Scholar
  7. 7.
    Chattopadhyay MK (2002) The cryoprotective effects of glycine betaine on bacteria. Trends Microbiol 10:311CrossRefGoogle Scholar
  8. 8.
    Darcan C, Ozkanca R, Idil O, Flint KP (2009) Viable but non-culturable state (VBNC) of Escherichia coli related to EnvZ under the effect of pH, starvation and osmotic stress in sea water. Pol J Microbiol 58:307–317Google Scholar
  9. 9.
    Guerra M, González K, González C, Parra B, Martínez M (2015) Dormancy in Deinococcus sp. UDEC-P1 as a survival strategy to escape from deleterious effects of carbon starvation and temperature. Int Microbiol 18:189–194Google Scholar
  10. 10.
    Mocali S, Chiellini C, Fabiani A, Decuzzi S, Pascale D, Parrilli E, Tutino ML, Perrin E, Bosi E, Fondi M, Lo Giudice A, Fani R (2017) Ecology of cold environments: new insights of bacterial metabolic adaptation through an integrated genomic-phenomic approach. Sci Rep 7:839–852CrossRefGoogle Scholar
  11. 11.
    Ponder MA, Gilmour SJ, Bergholz PW, Mindock CA, Hollingsworth R, Thomashow MF, Tiedje JM (2005) Characterization of potential stress responses in ancient Siberian permafrost psychroactive bacteria. FEMS Microbiol Ecol 53:103–115CrossRefGoogle Scholar
  12. 12.
    Bakermans C, Ayala-del-Río HL, Ponder MA, Vishnivetskaya T, Gilichinsky D, Thomashow MF, Tiedje JM (2006) Psychrobacter cryohalolentis sp. nov. and Psychrobacter arcticus sp. nov., isolated from Siberian permafrost. Int J Syst Evol Microbiol 56:1285–1291CrossRefGoogle Scholar
  13. 13.
    Fernandez-Bunster G, Gonzalez C, Barros J, Martinez M (2012) Quorum sensing circuit and reactive oxygen species resistance in Deinococcus sp. Curr Microbiol 65:719–725CrossRefGoogle Scholar
  14. 14.
    Don RH, Cox PT, Wainwright BJ, Baker K, Mattick JS (1991) 'Touchdown' PCR to circumvent spurious priming during gene amplification. Nucleic Acids Res 19:4008CrossRefGoogle Scholar
  15. 15.
    Weisburg WG, Barns SM, Pelletier DA, Lane DJ (1991) 16S ribosomal DNA amplification for phylogenetic study. J Bacteriol 173:697–703CrossRefGoogle Scholar
  16. 16.
    Aranda C, Godoy F, Becerra J, Barra R, Martínez M (2003) Aerobic secondary utilization of a non-growth and inhibitory substrate 2, 4, 6-trichlorophenol by Sphingopyxis chilensis S37 and Sphingopyxis-like strain S32. Biodegradation 14:265–274CrossRefGoogle Scholar
  17. 17.
    Beumer RR, TeGiffel MC, Cox LJ, Rombouts FM, Abee T (1994) Effect of exogenous proline, betaine, and carnitine on growth of Listeria monocytogenes in a minimal medium. Appl Environ Microbiol 60:1359–1363Google Scholar
  18. 18.
    Herbert RA (1990) Methods for enumerating microorganisms and determining biomass in natural environments. In: Grigorova R, Norris W (eds) Methods in microbiology. Techniques in microbial ecology. Elsevier, London, pp 1–39Google Scholar
  19. 19.
    Baty F, Delignette-Muller ML (2004) Estimating the bacterial lag time: which model, which precision? Int J Food Microbiol 91:261–277CrossRefGoogle Scholar
  20. 20.
    Johnsen AR, Bendixen K, Karlson U (2002) Detection of microbial growth on polycyclic aromatic hydrocarbons in microtiter plates by using the respiration indicator WST-1. Appl Environ Microbiol 68:2683–2689CrossRefGoogle Scholar
  21. 21.
    Cox MM, Battista JR (2005) Deinococcus radiodurans-the consummate survivor. Nat Rev Microbiol 3:882–8892CrossRefGoogle Scholar
  22. 22.
    Amato P, Christner BC (2009) Energy metabolism response to low temperature and frozen conditions in Psychrobacter cryohalolentis. Appl Environ Microbiol 75:711–718CrossRefGoogle Scholar
  23. 23.
    Im S, Joe M, Kim D, Park DH, Lim S (2013) Transcriptome analysis of salt-stressed Deinococcus radiodurans and characterization of salt-sensitive mutants. Res Microbiol 164:923–932CrossRefGoogle Scholar
  24. 24.
    Oren A, Bardavid RE, Kandel N, Aizenshtat Z, Jehlička J (2013) Glycine-betaine is the main organic osmotic solute in a stratified microbial community in a hypersaline evaporitic gypsum crust. Extremophiles 17:445–451CrossRefGoogle Scholar
  25. 25.
    Scholz A, Stahl J, Berardinis V, Müller V, Averhoff B (2016) Osmotic stress response in Acinetobacter baylyi: identification of a glycine-betaine biosynthesis pathway and regulation of osmoadaptive choline uptake and glycine betaine synthesis through a choline-responsive BetI repressor. Env Microbiol Rep 8:316–322CrossRefGoogle Scholar
  26. 26.
    Cayley S, Lewis BA, Record MT (1992) Origins of the osmoprotective properties of betaine and proline in Escherichia coli K-12. J Bacteriol 174:1586–1595CrossRefGoogle Scholar
  27. 27.
    Hoffmann T, Wensing A, Brosius M, Steil L, Völker U, Bremer E (2013) Osmotic control of opuA expression in Bacillus subtilis and its modulation in response to intracellular glycine betaine and proline pools. J Bacteriol 195:510–522CrossRefGoogle Scholar
  28. 28.
    Wargo MJ (2013) Homeostasis and catabolism of choline and glycine betaine: lessons from Pseudomonas aeruginosa. Appl Environ Microbiol 79:2112–2120CrossRefGoogle Scholar
  29. 29.
    Chou FI, Tan ST (1991) Salt-mediated multicell formation in Deinococcus radiodurans. J Bacteriol 173:3184–3190CrossRefGoogle Scholar
  30. 30.
    Csonka LN (1989) Physiological and genetic responses of bacteria to osmotic stress. Microbiol Rev 53:121–147Google Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  • Karina Gonzalez
    • 1
  • Boris Parra
    • 1
  • Carlos T. Smith
    • 1
  • Miguel Martinez
    • 1
    Email author
  1. 1.Departamento de Microbiología, Facultad de Ciencias BiológicasUniversidad de ConcepciónConcepciónChile

Personalised recommendations