Advertisement

ArdB Protective Activity for Unmodified λ Phage Against EcoKI Restriction Decreases in UV-Treated Escherichia coli

  • Vladimir P. Balabanov
  • Anna A. KudryavtsevaEmail author
  • Olga E. Melkina
  • Klara S. Pustovoit
  • Svetlana A. Khrulnova
  • Gennadii B. Zavilgelsky
Review Article
  • 4 Downloads

Abstract

Anti-restriction proteins ArdB/KlcA specifically inhibit restriction (endonuclease) activity of restriction-modification (RM) type I systems. Molecular mechanisms of ArdB/KlcA-based anti-restriction remain unknown. In this study, we quantitate effects of ArdB on protection of unmodified λ phage DNA from EcoKI restriction. After UV irradiations, which produce significant amounts of unmodified chromosomal DNA in Escherichia coli K12 cells, the protective activity of ArdB decreases. Unlike ArdB, DNA-mimicking protein Ocr retains its ability to protect the unmodified λ phage regardless of UV dose. We hypothesize that the observed decrease in ArdB protective activity in UV-treated cells is due to its binding to unmodified chromosomal DNA, which decreases effective concentrations of free ArdB molecules available for λ phage protection against type I restriction enzymes.

Notes

Funding

Russian Foundation for Basic Research 19-04-00495.

Compliance with Ethical Standards

Conflict of interest

Authors declare that thereare no conflicts of interest.

References

  1. 1.
    Atanasiu C, Su TJ, Sturrock SS, Dryden DTF (2002) Interaction of the Ocr, gene 0.3 protein of bacteriophage T7 with EcoKI restriction-modification enzyme. Nucleic Acids Res 30:3936–3944CrossRefGoogle Scholar
  2. 2.
    Balabanov VP, Pustovoit KS, Zavilgelsky GB (2012) Comparative analysis of antirestriction activity of R64 ArdA and ArdB proteins. Mol Biol (Moskow) 46:269–275Google Scholar
  3. 3.
    Belogurov AA, Delver EP, Rodzevich OV (1993) Plasmid pKM101 encodes two nonhomologous antirestriction proteins (ArdA and ArdB) whose expression is controlled by homologous regulatory sequences. J Bacteriol 175:4843–4850CrossRefGoogle Scholar
  4. 4.
    Blakely GW, Murray NE (2006) Control of the endonuclease activity of type I restriction-modification systems is required to maintain chromosome integrity following homologous recombination. Mol Microbiol 60:883–893CrossRefGoogle Scholar
  5. 5.
    Doronina VA, Murray NE (2001) The proteolytic control of restriction activity in Escherichia coli K12. Mol Microbiol 39:416–428CrossRefGoogle Scholar
  6. 6.
    Efimova EP, Delver EP, Belogurov AA (1988) 2-Aminopurine and 5-bromouracil induce alleviation of type I restriction in Escherichia coli: mismatches function as inducing signals? Mol Gen Genet 214:317–320CrossRefGoogle Scholar
  7. 7.
    Goryanin II, Kudryavtseva AA, Balabanov VP et al (2018) Antirestriction activities of KlcA (RP4) and ArdB (R64) proteins. FEMS Microbiol Lett 365(23):227–229Google Scholar
  8. 8.
    Guan KL, Dixon JE (1991) Eukaryotic proteins expressed in Escherichia coli: an improved thrombin cleavage and purification procedure of fusion protein with glutathione S-transferase. Anal Biochem 192:262–267CrossRefGoogle Scholar
  9. 9.
    Ivančić-Baće I, Vlašić I, Čogelja-Čajo G et al (2006) Roles of PriA protein and double-strand DNA break repair functions in UV-induced restriction alleviation in Escherichia coli. Genetics 174:2137–2149CrossRefGoogle Scholar
  10. 10.
    Kelleher JE, Raleigh EG (1994) Response to UV damage by four Escherichia coli K-12 restriction systems. J Bacteriol 176:5888–5890CrossRefGoogle Scholar
  11. 11.
    Kushner SR, Nagaishi H, Templin A, Clark AJ (1971) Genetic recombination in Escherichia coli. The role of exonuclease I. Proc Natl Acad Sci USA 68:824–827CrossRefGoogle Scholar
  12. 12.
    Laemmli UK (1970) Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature 227:680–685CrossRefGoogle Scholar
  13. 13.
    Makovets S, Doronina VA, Murray N (1999) Regulation of endonuclease activity by proteolysis breakage of unmodified bacterial chromosomes by type I restriction enzymes. Proc Natl Acad Sci USA 96:9757–9762CrossRefGoogle Scholar
  14. 14.
    Serfiotis-Mitsa D, Herbert AP, Roberts GA, Soares DC, White JH et al (2010) The structure of the KlcA and ArdB proteins reveals a novel fold and antirestriction activity against Type I DNA restriction systems in vivo but not in vitro. Nucleic Acids Res 38:1723–1737CrossRefGoogle Scholar
  15. 15.
    Thoms B, Wackernagel W (1984) Genetic control of damage-inducible restriction alleviation in Escherichia coli K12 an SOS function not repressed by lexA. Mol Gen Genet 197:297–303CrossRefGoogle Scholar
  16. 16.
    Walkinshaw MD, Taylor P, Sturrock SS et al (2002) Structure of Ocr from bacteriophage T7, a protein that mimics B-form DNA. Mol Cell 9:187–194CrossRefGoogle Scholar
  17. 17.
    Zavilgelsky GB, Kotova VYu, Rastorguev SM (2011) Antimodification activity of the ArdA and Ocr proteins. Russ J Genetics 47:139–146CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  • Vladimir P. Balabanov
    • 1
  • Anna A. Kudryavtseva
    • 2
    Email author
  • Olga E. Melkina
    • 1
  • Klara S. Pustovoit
    • 1
  • Svetlana A. Khrulnova
    • 1
    • 3
  • Gennadii B. Zavilgelsky
    • 1
  1. 1.Laboratory of Genetics of BacteriaState Research Institute of Genetics and Selection of Industrial Microorganisms of the National Research Center “Kurchatov Institute”MoscowRussia
  2. 2.Molecular Genetics LabMoscow Institute of Physics and TechnologyDolgoprudnyRussia
  3. 3.Laboratory of Clinical Bacteriology, Mycology, and Antibiotic TreatmentNational Research Center for HematologyMoscowRussia

Personalised recommendations