Advertisement

Comparative Analysis of Draft Genome Sequence of Rhodococcus sp. Eu-32 with Other Rhodococcus Species for Its Taxonomic Status and Sulfur Metabolism Potential

  • Nasrin AkhtarEmail author
  • Muhammad A. GhauriEmail author
  • Kalsoom Akhtar
  • Sana Parveen
  • Muhammad Farooq
  • Aamir Ali
  • Peter Schierack
Article
  • 14 Downloads

Abstract

Rhodococcus sp. Eu-32 has shown an extended novel dibenzothiophene desulfurization sulfur-specific 4S pathway and could remove significant amounts of organic sulfur from coal. Here, we present the draft genome sequence of Eu-32 with a genome size of approximately 5.61 Mb, containing 5065 protein coding sequences with a G+C content of 65.1%. The Rhodococcus sp. Eu-32 showed ~ 99% identity at the 16S rRNA gene sequence level while < 34% digital DNA–DNA hybridization and < 81% average nucleotide identity values with the genome sequence of most closely related known Rhodococcus species, suggesting that it is taxonomically different from the already reported Rhodococcus species. Among the annotated genes, 90 are involved in the metabolism of sulfur. Comparative genome analysis suggests many commonalities in sulfur metabolism gene sets that may have evolved due to many factors including ecological pressures. Our study and the genome sequence data will be available for further research and will provide insights into potential biotechnological and industrial applications of this bacterium.

Notes

Funding

The authors received no specific grant from any funding agency.

Compliance with Ethical Standards

Conflict of interest

The authors declare no conflict of interest.

Supplementary material

284_2019_1737_MOESM1_ESM.docx (36 kb)
Supplementary material 1 (DOCX 35 kb)

References

  1. 1.
    Abin-Fuentes A, Mohamed MES, Wang DI, Prather KL (2013) Exploring the mechanism of biocatalyst inhibition in microbial desulfurization. Appl Environ Microbiol 79(24):7807–7817CrossRefPubMedCentralGoogle Scholar
  2. 2.
    Akhtar N, Ghauri MA, Akhtar K (2016) Exploring coal biodesulphurization potential of a novel organic sulphur metabolizing Rhodococcus spp. (Eu-32)—a case study. Geomicrobiol J 33(6):468–472CrossRefGoogle Scholar
  3. 3.
    Akhtar N, Ghauri MA, Anwar MA, Akhtar K (2009) Analysis of the dibenzothiophene metabolic pathway in a newly isolated Rhodococcus spp. FEMS Microbiol Lett 301(1):95–102CrossRefGoogle Scholar
  4. 4.
    Aziz RK, Bartels D, Best AA et al (2008) The RAST server: rapid annotation using subsystem technology. BMC Genomics 9:75CrossRefPubMedCentralGoogle Scholar
  5. 5.
    Boniek D, Figueiredo D, dos Santos AFB, de Resende Stoianoff MA (2015) Biodesulfurization: a mini review about the immediate search for the future technology. Clean Technol Environ Policy 17(1):29–37CrossRefGoogle Scholar
  6. 6.
    Chun J, Oren A, Ventosa A et al (2018) Proposed minimal standards for the use of genome data for the taxonomy of prokaryotes. Int J Syst Evol Microbiol 68:461–466CrossRefGoogle Scholar
  7. 7.
    Ellis HR (2011) Mechanism for sulfur acquisition by the alkanesulfonate monooxygenase system. Bioorg Chem 39:178–184CrossRefGoogle Scholar
  8. 8.
    Ferreira P, Sousa SF, Fernandes PA, Ramos M (2017) Improving the catalytic power of the DszD enzyme for the biodesulfurization of crude oil and derivatives. Chem Eur J 23(68):17231–17241CrossRefGoogle Scholar
  9. 9.
    Franzetti A, Gandolfi I, Bestetti G, Smyth TJP, Banat IM (2010) Production and applications of trehalose lipid biosurfactants. Eur J Lipid Sci Technol 112:617–627CrossRefGoogle Scholar
  10. 10.
    Goris J, Konstantinidis KT, Klappenbach JA, Coenye T, Vandamme P, Tiedje JM (2007) DNA-DNA hybridization values and their relationship to whole-genome sequence similarities. Int J Syst Evol Microbiol 57:81–91CrossRefGoogle Scholar
  11. 11.
    Kanehisa M, Sato Y, Morishima K (2016) BlastKOALA and GhostKOALA: KEGG tools for functional characterization of genome and metagenome sequences. J Mol Biol 428:726–731CrossRefGoogle Scholar
  12. 12.
    Kertesz MA (1999) Riding the sulfur cycle-metabolism of sulfonates and sulfate esters in Gram-negative bacteria. FEMS Microbiol Rev 24:135–175Google Scholar
  13. 13.
    Maass D, Todescato D, Moritz D et al (2015) Desulfurization and denitrogenation of heavy gas oil by Rhodococcus erythropolis ATCC 4277. Bioprocess Biosyst Eng 38(8):1447–1453CrossRefGoogle Scholar
  14. 14.
    Meier-Kolthoff JP, Auch AF, Klenk HP, Göker M (2013) Genome sequence-based species delimitation with confidence intervals and improved distance functions. BMC Bioinform 14:60CrossRefGoogle Scholar
  15. 15.
    Mishra S, Pradhan N, Panda S, Akcil A (2016) Biodegradation of dibenzothiophene and its application in the production of clean coal. Fuel Process Technol 152:325–342CrossRefGoogle Scholar
  16. 16.
    Nuhu AA (2013) Bio-catalytic desulfurization of fossil fuels: a mini review. Rev Environ Sci Biotechnol 12(1):9–23CrossRefGoogle Scholar
  17. 17.
    Porto B, Maass D, Oliveira JV et al (2018) Heavy gas oil biodesulfurization using a low-cost bacterial consortium. J Chem Technol Biotechnol 93(8):2359–2363CrossRefGoogle Scholar
  18. 18.
    Rangra S, Kabra M, Gupta V, Srivastava P (2018) Improved conversion of dibenzothiophene into sulfone by surface display of dibenzothiophene monooxygenase (DszC) in recombinant Escherichia coli. J Biotechnol 287:59–67CrossRefGoogle Scholar
  19. 19.
    Ross DE, Marshall CW, May HD, Norman RS (2016) Comparative genomic analysis of Sulfurospirillum cavolei MES reconstructed from the metagenome of an electro-synthetic microbiome. PLoS ONE 11(3):e0151214CrossRefPubMedCentralGoogle Scholar
  20. 20.
    Shavandi M, Soheili M, Zareian S, Akbari N, Khajeh K (2013) The gene cloning, overexpression, purification, and characterization of dibenzothiophene monooxygenase and desulfinase from Gordonia alkanivorans RIPI90A. J Pet Sci Technol 3(2):57–64Google Scholar
  21. 21.
    Soleimani M, Bassi A, Margaritis A (2007) Biodesulphurization of refractory organic sulfur compounds in fossil fuels. Biotechnol Adv 25(6):570–596CrossRefGoogle Scholar
  22. 22.
    Tamura K, Stecher G, Peterson D, Filipski A, Kumar S (2013) MEGA6: molecular evolutionary genetics analysis version 6.0. Mol Biol Evol 30:2725–2729CrossRefPubMedCentralGoogle Scholar
  23. 23.
    Urich T, Gomes CM, Kletzin A, Frazao C (2006) X-ray structure of a self-compartmentalizing sulfur cycle metalloenzyme. Science 311:996–1000CrossRefGoogle Scholar
  24. 24.
    Van der Geize R, Dijkhuizen L (2004) Harnessing the catabolic diversity of Rhodococci for environmental and biotechnological applications. Curr Opin Microbiol 7:255–261CrossRefGoogle Scholar
  25. 25.
    Wang J, Butler RR, Wu F et al (2017) Enhancement of microbial biodesulfurization via genetic engineering and adaptive evolution. PLoS ONE 12(1):e0168833CrossRefPubMedCentralGoogle Scholar
  26. 26.
    Yoon SH, Ha SM, Kwon S, Lim J, Kim Y et al (2017) Introducing EzBioCloud: a taxonomically united database of 16S rRNA gene sequences and whole-genome assemblies. Int J Syst Evol Microbiol 67:1613–1617CrossRefPubMedCentralGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  • Nasrin Akhtar
    • 1
    Email author
  • Muhammad A. Ghauri
    • 1
    Email author
  • Kalsoom Akhtar
    • 1
  • Sana Parveen
    • 1
  • Muhammad Farooq
    • 2
  • Aamir Ali
    • 3
  • Peter Schierack
    • 4
  1. 1.Industrial Biotechnology DivisionNational Institute for Biotechnology and Genetic EngineeringFaisalabadPakistan
  2. 2.Agricultural Biotechnology DivisionNational Institute for Biotechnology and Genetic EngineeringFaisalabadPakistan
  3. 3.Health Biotechnology DivisionNational Institute for Biotechnology and Genetic EngineeringFaisalabadPakistan
  4. 4.Institute for BiotechnologyBrandenburg University of Technology Cottbus-SenftenbergSenftenbergGermany

Personalised recommendations